Advertisement

Fast boundary-domain integral method for unsteady convection-diffusion equation with variable diffusivity using the modified Helmholtz fundamental solution

  • Jure RavnikEmail author
  • Jan Tibuat
Original Paper

Abstract

In this paper, we develop a boundary-domain integral formulation of the unsteady convection-diffusion equation with variable material properties. The derivation is based on the Green’s second theorem using the fundamental solution of the modified Helmholtz equation. Several discretisation approaches are considered: the full matrix and domain-decomposition approaches are compared with adaptive cross-approximation and wavelet-based approximation techniques. With the use of modified Helmholtz fundamental solution, whose shape is determined by the time step size and diffusivity, we are able to achieve an improvement in the final approximated matrix size. We present several numerical tests to verify the validity of the proposed integral formulation and assess the approximation properties for different diffusivity variations and different Péclet numbers. We develop guidelines for choosing the user prescribed parameters such as the hierarchical matrix admissibility parameter, the adaptive cross-approximation rank determination parameter and the wavelet thresholding parameter.

Keywords

Modified Helmholtz equation Boundary element method Convection-diffusion equation Adaptive cross-approximation Wavelet transform Hierarchical matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding No. P2-0196) and the Deutsche Forschungsgemeinschaft (project STE 544/58).

References

  1. 1.
    Aimi, A., Diligenti, M., Lunardini, F.: Panel clustering method and restriction matrices for symmetric Galerkin BEM. Numer. Algor. 40(4), 355–382 (2005).  https://doi.org/10.1007/s11075-005-8136-x MathSciNetzbMATHGoogle Scholar
  2. 2.
    AL-Jawary, M., Ravnik, J., Wrobel, L., Škerget, L.: Boundary element formulations for numerical solution of two-dimensional diffusion problems with variable coefficients. Comput. Math. Appl. 64(8), 2695–2711 (2012).  https://doi.org/10.1016/j.camwa.2012.08.002. http://linkinghub.elsevier.com/retrieve/pii/S0898122112005135 MathSciNetzbMATHGoogle Scholar
  3. 3.
    AL-Jawary, M., Wrobel, L.C.: Numerical solution of two-dimensional mixed problems with variable coefficients by the boundary-domain integral and integro-differential equation methods. Eng. Anal. Bound. Elem. 35, 1279–1287 (2011)MathSciNetzbMATHGoogle Scholar
  4. 4.
    AL-Jawary, M., Wrobel, L.C.: Numerical solution of the twodimensional Helmholtz equation with variable coefficients by the radial integration boundary integral and integro-differential equation methods. Int. J. Comput. Math. 89(11), 1463–1487 (2012).  https://doi.org/10.1080/00207160.2012.667087 MathSciNetzbMATHGoogle Scholar
  5. 5.
    AL-Jawary, M., Wrobel, L.C.: Radial integration boundary integral and integro-differential equation methods for two-dimensional heat conduction problems with variable coefficients. Eng. Anal. Bound. Elem. 36 (5), 685–695 (2012).  https://doi.org/10.1016/j.enganabound.2011.11.019 MathSciNetzbMATHGoogle Scholar
  6. 6.
    Antunes, P.R.: A numerical algorithm to reduce ill-conditioning in meshless methods for the Helmholtz equation. Numer. Algor., 1–19.  https://doi.org/10.1007/s11075-017-0465-z (2018)
  7. 7.
    Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000).  https://doi.org/10.1007/PL00005410 MathSciNetzbMATHGoogle Scholar
  8. 8.
    Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003).  https://doi.org/10.1007/s00607-002-1469-6 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms 1. Wavelets Appl. 20(2), 368–393 (1991).  https://doi.org/10.1002/cpa.3160440202 MathSciNetzbMATHGoogle Scholar
  10. 10.
    Bucher, H.F., Wrobel, L.C., Mansur, W.J., Magluta, C.: A novel approach to applying fast wavelet transforms in boundary element method. El J. Bound. Elem. BETEQ 2001, 187–195 (2002)Google Scholar
  11. 11.
    Bucher, H.F., Wrobel, L.C., Mansur, W.J., Magluta, C.: On the block wavelet transform applied to the boundary element method. Engi. Anal. Bound. Elem. 28(6), 571–581 (2004).  https://doi.org/10.1016/j.enganabound.2003.10.002 zbMATHGoogle Scholar
  12. 12.
    Cheng, A.D.A.H.D., Cheng, D.T.: Heritage and early history of the boundary element method. Eng. Anal. Bound. Elem. 29(3), 268–302 (2005).  https://doi.org/10.1016/j.enganabound.2004.12.001. http://linkinghub.elsevier.com/retrieve/pii/S0955799705000020 zbMATHGoogle Scholar
  13. 13.
    Cheng, H., Huang, J., Leiterman, T.J.: An adaptive fast solver for the modified Helmholtz equation in two dimensions. J. Comput. Phys. 211(2), 616–637 (2006).  https://doi.org/10.1016/j.jcp.2005.06.006 MathSciNetzbMATHGoogle Scholar
  14. 14.
    Clavero, C., Jorge, J.C.: A fractional step method for 2D parabolic convection-diffusion singularly perturbed problems: uniform convergence and order reduction. Numer. Algor. 75(3), 809–826 (2017).  https://doi.org/10.1007/s11075-016-0221-9 MathSciNetzbMATHGoogle Scholar
  15. 15.
    Cunha, C., Carrer, J., Oliveira, M., Costa, V.: A study concerning the solution of advection - diffusion problems by the boundary element method. Eng. Anal. Bound. Elem. 65, 79–94 (2016).  https://doi.org/10.1016/j.enganabound.2016.01.002. http://www.sciencedirect.com/science/article/pii/S0955799716000047 MathSciNetzbMATHGoogle Scholar
  16. 16.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Dehghan, M.: Numerical solution of the three-dimensional advection-diffusion equation. Appl. Math. Comput. 150 (1), 5–19 (2004).  https://doi.org/10.1016/S0096-3003(03)00193-0. http://www.sciencedirect.com/science/article/pii/S0096300303001930 MathSciNetzbMATHGoogle Scholar
  18. 18.
    Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Hackbusch, W.: A Sparse Matrix Arithmetic Based on H-matrices. Part I: introduction to H-matrices. Computing 108, 89–108 (1999).  https://doi.org/10.1007/s006070050015 MathSciNetzbMATHGoogle Scholar
  20. 20.
    Hackbusch, W., Nowak, Z.P.: On the fast multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Heldring, A., Ubeda, E., Rius, J.M.: On the convergence of the ACA algorithm for radiation and scattering problems. IEEE Trans. Antennas Propag. 62 (7), 3806–3809 (2014).  https://doi.org/10.1109/TAP.2014.2316293 Google Scholar
  22. 22.
    Heldring, A., Ubeda, E., Rius, J.M.: Stochastic estimation of the Frobenius norm in the ACA convergence criterion. IEEE Trans. Antennas Propag. 63(3), 1155–1158 (2015).  https://doi.org/10.1109/TAP.2014.2386306 MathSciNetzbMATHGoogle Scholar
  23. 23.
    Karageorghis, A.: The method of fundamental solutions for elliptic problems in circular domains with mixed boundary conditions. Numer. Algor. 68 (1), 185–211 (2015).  https://doi.org/10.1007/s11075-014-9900-6 MathSciNetzbMATHGoogle Scholar
  24. 24.
    Kumar, A., Jaiswal, D.K., Kumar, N.: Analytical solutions of one-dimensional advection–diffusion equation with variable coefficients in a finite domain. J. Earth Syst. Sci. 118(5), 539–549 (2009)Google Scholar
  25. 25.
    Mikhailov, S.E.: Localized boundary-domain integral formulations for problems with variable coefficients. Eng. Anal. Bound. Elem. 26, 681–690 (2002)zbMATHGoogle Scholar
  26. 26.
    Mikhailov, S.E., Nakhova, I.S.: Mesh-based numerical implementation of the localized boundary domain integral equation method to a variable-coefficient Neumann problem. J. Eng. Math. 51, 251–259 (2005)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Partridge, P.W., Brebbia, C.A., Wrobel, L.C.: The Dual Reciprocity Boundary Element Method. Computational Mechanics Publications Southampton, U.K Boston: Computational Mechanics Publications; London; New York (1992)Google Scholar
  28. 28.
    Pudykiewicz, J.A.: Numerical solution of the reaction-advection-diffusion equation on the sphere. J. Comput. Phys. 213(1), 358–390 (2006).  https://doi.org/10.1016/j.jcp.2005.08.021. http://www.sciencedirect.com/science/article/pii/S0021999105003840 MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ravnik, J., Škerget, L.: A gradient free integral equation for diffusion - convection equation with variable coefficient and velocity. Eng. Anal. Bound. Elem. 37, 683–690 (2013).  https://doi.org/10.1016/j.enganabound.2013.01.012 MathSciNetzbMATHGoogle Scholar
  30. 30.
    Ravnik, J., Škerget, L.: Integral equation formulation of an unsteady diffusion-convection equation with variable coefficient and velocity. Comput. Math. Appl. 66, 2477–2488 (2014).  https://doi.org/10.1016/j.camwa.2013.09.021 MathSciNetzbMATHGoogle Scholar
  31. 31.
    Ravnik, J., Škerget, L., Hriberšek, M.: The wavelet transform for BEM computational fluid dynamics. Eng. Anal. Bound. Elem. 28, 1303–1314 (2004)Google Scholar
  32. 32.
    Ravnik, J., Škerget, L., žunič, Z.: Velocity-vorticity formulation for 3D natural convection in an inclined enclosure by BEM. Int. J. Heat Mass Transfer 51 (17-18), 4517–4527 (2008).  https://doi.org/10.1016/j.ijheatmasstransfer.2008.01.018 zbMATHGoogle Scholar
  33. 33.
    Ravnik, J., Škerget, L., žunič, Z.: Fast single domain-subdomain BEM algorithm for 3D incompressible fluid flow and heat transfer. Int. J. Numer. Methods Eng. 77(12), 1627–1645 (2009).  https://doi.org/10.1002/nme.2467 MathSciNetzbMATHGoogle Scholar
  34. 34.
    Remešikova, M.: Numerical solution of two-dimensional convection-diffusion-adsorption problems using an operator splitting scheme. Appl. Math. Comput. 184(1), 116–130 (2007).  https://doi.org/10.1016/j.amc.2005.06.018 . http://www.sciencedirect.com/science/article/pii/S0096300306004905 MathSciNetzbMATHGoogle Scholar
  35. 35.
    Rjasanow, S., Steinbach, O.: The Fast Solution of Boundary Integral Equations. Mathematical and Analytical Techniques with Applications to Engineering. Springer, Boston (2007). http://link.springer.com/10.1007/0-387-34042-4 zbMATHGoogle Scholar
  36. 36.
    Sakai, K., Kimura, I.: A numerical scheme based on a solution of nonlinear advection-diffusion equations. J. Comput. Appl. Math. 173(1), 39–55 (2005).  https://doi.org/10.1016/j.cam.2004.02.019. http://www.sciencedirect.com/science/article/pii/S0377042704001323 MathSciNetzbMATHGoogle Scholar
  37. 37.
    Škerget, L., Hriberšek, M., Kuhn, G.: Computational fluid dynamics by boundary – domain integral method. Int. J. Numer. Methods Eng. 46 (8), 1291–1311 (1999).  https://doi.org/10.1002/(SICI)1097-0207(19991120)46:8<1291::AID-NME755>3.0.CO;2-O zbMATHGoogle Scholar
  38. 38.
    Tibaut, J., Škerget, L., Ravnik, J.: Acceleration of a BEM based solution of the velocity-vorticity formulation of the Navier-Stokes equations by the cross approximation method. Eng. Anal. Bound. Elem. 82, 17–26 (2017).  https://doi.org/10.1016/j.enganabound.2017.05.013 MathSciNetzbMATHGoogle Scholar
  39. 39.
    Yang, K., Gao, X.W.X.W.: Radial integration BEM for transient heat conduction problems. Eng. Anal. Bound. Elem. 34(6), 557–563 (2010).  https://doi.org/10.1016/j.enganabound.2010.01.008 MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of MariborMariborSlovenia

Personalised recommendations