On numerical evaluation of integrals involving oscillatory Bessel and Hankel functions

  • Sakhi Zaman
  • Siraj-ul-IslamEmail author
Original Paper


A mixed-type formulation composed of Gauss-Laguerre quadrature and meshless collocation is presented for approximation of oscillatory integrals containing Hankel function of the first kind. An adaptive splitting procedure is implemented to resolve singularity of the transformed integral at x = 0. The singularity ridden integral is computed by the multi-resolution quadrature. Bessel function of the second kind is transformed into a Bessel function of the first kind before being approximated by the meshless collocation method (Zaman and Siraj-ul-Islam, J. Comput. Appl. Math. 315, 161–174, 2017). Theoretical error bounds of the proposed methods are established. Numerical results obtained from the benchmark problems are presented in the tabular and graphical forms for verification of theoretical error bounds and accuracy of the methods.


Oscillatory integrals Hankel function of the first kind Gauss-Laguerre quadrature Bessel function of the second kind Meshless collocation method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    Arfken, G.B., Weber, H.J., Harris, F.E.: Mathematical methods for physicists: a comprehensive guide. Academic press (2011)Google Scholar
  2. 2.
    Aziz, I., Siraj-ul-Islam, Khan, W.: Quadrature rules for numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 61, 2770–2781 (2011)Google Scholar
  3. 3.
    Bao, G., Sun, W.: A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci. Comput. 27(2), 553–574 (2005)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brunet, M., Morestin, F., Walter-Leberre, H.: Failure analysis of anisotropic sheet-metals using a non-local plastic damage model. J. Mater. Proc. Tech. 170(1), 457–470 (2005)Google Scholar
  5. 5.
    Chandler-Wilde, S.N., Langdon, S.: A Galerkin boundary element method for high frequency scattering by convex polygons. SIAM J. Numer. Anal. 45(2), 610–640 (2007)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chen, R.: Numerical approximations to integrals with a highly oscillatory Bessel kernel. Appl. Numer. Math. 62(5), 636–648 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chen, R.: On the evaluation of Bessel transformations with the oscillators via asymptotic series of Whittaker functions. J. Comput. Appl. Math. 250, 107–121 (2013)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, R.: Numerical approximations for highly oscillatory Bessel transforms and applications. J. Math. Anal. Appl. 421(2), 1635–1650 (2015)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Elliott, D., Johnston, P.R.: Gauss-Legendre quadrature for the evaluation of integrals involving the Hankel function. J. Comput. Appl. Math. 211(1), 23–35 (2008)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Evans, G.A., Chung, K.C.: Some theoretical aspects of generalized quadrature methods. J. Complexity 19(3), 272–285 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Ferreira, A.J.M., Fasshauer, G.E., Batra, R.C., Rodrigues, J.D.: Static deformations and vibration analysis of composite and sandwich plates using a layerwise theory and RBF-PS discretizations with optimal shape parameter. Compos. Struct. 86, 328–343 (2008)Google Scholar
  12. 12.
    Gradshteyn, I.S., Ryzhik, I.M.: : Table of integrals, series, and products, 7th edn. Academic Press, New York (2007)zbMATHGoogle Scholar
  13. 13.
    Huybrechs, D., Vandewalle, S.: A sparse discretization for integral equation formulations of high frequency scattering problems. SIAM J. Sci. Comput. 29(6), 2305–2328 (2007)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ioakimidis, N.I.: Application of the gauss-Laguerre and radau-Laguerre quadrature rules to the numerical solution of Cauchy type singular integral equations. Comput. Struct. 14(1), 63–70 (1981)zbMATHGoogle Scholar
  15. 15.
    Jentschura, U.D., Lötstedt, E.: Numerical calculation of Bessel, Hankel and Airy functions. Comput. Phys. Commun. 183(3), 506–519 (2012)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kzaz, M.: Convergence acceleration of the gauss-Laguerre quadrature formula. Appl. Num. Math. 29, 201–220 (1999)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Levin, D.: Fast integration of rapidly oscillatory functions. J. Comput. Appl. Math. 67(1), 95–101 (1996)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Levin, D.: Analysis of a collocation method for integrating rapidly oscillatory functions. J. Comput. Appl. Math. 78(1), 131–138 (1997)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Lu, T., Yevick, D.: A vectorial boundary element method analysis of integrated optical waveguides. J. Lightw. Tech. 21(8), 1793 (2003)Google Scholar
  20. 20.
    Piessens, R., Branders, M.: Modified Clenshaw-Curtis method for the computation of Bessel function integrals. BIT Numer. Math. 23(3), 370–381 (1983)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Ramesh, P.S., Lean, M.H.: A boundary integral formulation for natural convection flows. I. J. Numer. Method Biomed. Eng. 8(6), 407–415 (1992)zbMATHGoogle Scholar
  22. 22.
    Rippa, S.: An algorithm for selecting a good value for the parameter c in radial basis function interpolation. Adv. Comp. Math. 11, 193–210 (1999)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Schippers, H.: Boundary-integral-equation methods for screen problems in acoustic and electromagnetic aerospace research. J. Eng. Math. 34(1-2), 143–162 (1998)zbMATHGoogle Scholar
  24. 24.
    Siraj-ul-Islam, Al-Fhaid, A.S., Zaman, S.: Meshless and wavelets based complex quadrature of highly oscillatory integrals and the integrals with stationary points. Eng. Anal. Bound. Elem. 37, 1136–1144 (2013)Google Scholar
  25. 25.
    Siraj-ul-Islam, Aziz, I., Haq, F.: A comparative study of numerical integration based on Haar wavelets and hybrid functions. Comput. Math. Appl. 59(6), 2026–2036 (2010)Google Scholar
  26. 26.
    Siraj-ul-Islam, Zaman, S.: New quadrature rules for highly oscillatory integrals with stationary points. J. Comput. Appl. Math. 278, 75–89 (2015)Google Scholar
  27. 27.
    Watson, G.N.: A treatise on the theory of Bessel functions. Cambridge University Press (1995)Google Scholar
  28. 28.
    Xiang, S.: Numerical analysis of a fast integration method for highly oscillatory functions. BIT Numer. Math. 47(2), 469–482 (2007)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Xiang, S., Cho, Y.J., Wang, H., Brunner, H.: Clenshaw–Curtis-Filon-type methods for highly oscillatory Bessel transforms and applications. IMA J. Numer. Analy. 31(4), 1281–1314 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Xiang, S., Gui, W.: On generalized quadrature rules for fast oscillatory integrals. Appl. Math. Comput. 197(1), 60–75 (2008)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Xiang, S., Wang, H.: Fast integration of highly oscillatory integrals with exotic oscillators. Math Comput. 79(270), 829–844 (2010)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Xu, Z., Milovanović, G.V.: Efficient method for the computation of oscillatory Bessel transform and Bessel Hilbert transform. J. Comput. Appl. Math. 308, 117–137 (2016)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Xu, Z., Milovanović, G.V., Xiang, S.: Efficient computation of highly oscillatory integrals with Hankel kernel. Appl. Math. Comput. 261, 312–322 (2015)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Xu, Z., Xiang, S.: On the evaluation of highly oscillatory finite Hankel transform using special functions. Numer. Algorithms 72(1), 37–56 (2015)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Zaman, S., Siraj-ul-Islam: Efficient numerical methods for Bessel type of oscillatory integrals. J. Comput. Appl. Math. 315, 161–174 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Basic SciencesUniversity of Engineering and Technology PeshawarPeshawarPakistan

Personalised recommendations