Advertisement

Transformed implicit-explicit DIMSIMs with strong stability preserving explicit part

  • G. IzzoEmail author
  • Z. Jackiewicz
Original Paper
  • 19 Downloads

Abstract

For many systems of differential equations modeling problems in science and engineering, there are often natural splittings of the right hand side into two parts, one of which is non-stiff or mildly stiff, and the other part is stiff. Such systems can be efficiently treated by a class of implicit-explicit (IMEX) diagonally implicit multistage integration methods (DIMSIMs), where the stiff part is integrated by an implicit formula, and the non-stiff part is integrated by an explicit formula. We will construct methods where the explicit part has strong stability preserving (SSP) property, and the implicit part of the method is A-, or L-stable. We will also investigate stability of these methods when the implicit and explicit parts interact with each other. To be more precise, we will monitor the size of the region of absolute stability of the IMEX scheme, assuming that the implicit part of the method is A-, or L-stable. Finally, we furnish examples of SSP IMEX DIMSIMs up to the order four with good stability properties.

Keywords

IMEX methods SSP property General linear methods DIMSIMs Stability analysis Construction of highly stable methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

References

  1. 1.
    Braś, M., Cardone, A., Jackiewicz, Z., Pierzchaa, P.: Error propagation for implicit-explicit general linear methods. Appl. Numer. Math. 131, 207–231 (2018)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Braś, M., Izzo, G., Jackiewicz, Z.: Accurate Implicit-Explicit general linear methods with inherent Runge-Kutta stability. J. Sci. Comput. 70, 1105–1143 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Butcher, J.C.: Diagonally-implicit multi-stage integration methods. Appl. Numer. Math. 11, 347–363 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefGoogle Scholar
  5. 5.
    Califano, G., Izzo, G., Jackiewicz, Z.: Starting procedures for general linear methods. Appl. Numer. Math. 120, 165–175 (2017)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Califano, G., Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods with Runge-Kutta stability. J. Sci. Comput. 76(2), 943–968 (2018)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Extrapolation-based implicit-explicit general linear methods. Numer. Algorithm. 65, 377–399 (2014)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Cardone, A., Jackiewicz, Z., Sandu, A., Zhang, H.: Construction of highly stable implicit-explicit general linear methods, Discrete Contin. Dyn. Syst Dynamical systems, Differential Equations and Applications, 10th AIMS Conference Suppl., pp. 185–194 (2015)Google Scholar
  9. 9.
    Constantinescu, E.M., Sandu, A.: Optimal strong-stability-preserving general linear methods. SIAM J. Sci. Comput. 32, 3130–3150 (2010)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Gottlieb, S., Ketcheson, D., Shu, C.-W.: Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations, World Scientific. New Jersey, London (2011)CrossRefGoogle Scholar
  11. 11.
    Hindmarsh, A.C.: ODEPACK, A systematized collection of ODE solvers. In: Stepleman, R.S., et al. (eds.) Scientific Computing. (vol. 1 of IMACS Transactions on Scientific Computation), pp. 55–64. Amsterdam, North-Holland (1983)Google Scholar
  12. 12.
    Hundsdorfer, W., Ruuth, S.J.: IMEX Extensions of linear multistep methods with general monotonicity and boundedness properties. J. Comput. Phys. 225, 2016–2042 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Hundsdorfer, W., Verwer, J.G.: Numerical solution of Time-Dependent Advection-Diffusion-Reaction equations. Springer, Berlin (2003)CrossRefGoogle Scholar
  14. 14.
    Izzo, G., Jackiewicz, Z.: Highly stable implicit-explicit Runge-Kutta methods. Appl. Numer. Math. 113, 71–92 (2017)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Izzo, G., Jackiewicz, Z.: Strong stability preserving general linear methods. J. Sci. Comput. 65, 271–298 (2015)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Izzo, G, Jackiewicz, Z: Strong stability preserving transformed DIMSIMs. J. Comput. Appl. Math. 343, 174–188 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Izzo, G., Jackiewicz, Z.: Strong stability preserving transformed implicit-explicit DIMSIMs, arXiv:1806.07804
  18. 18.
    Jackiewicz, Z.: General Linear Methods for Ordinary Differential Equations. Wiley, Hoboken (2009)CrossRefGoogle Scholar
  19. 19.
    Jin, S.: Runge-kutta methods for hyperbolic systems with stiff relaxation terms. J. Comput. Phys. 122, 51–67 (1995)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ketcheson, D.I., Gottlieb, S., Macdonald, C.B.: Strong stability preserving two-step Runge-Kutta methods. SIAM J. Numer. Anal. 49, 2618–2639 (2011)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Pareschi, L., Russo, G.: Implicit-explicit Runge-Kutta schemes and applications to hyperbolic systems with relaxation. J. Sci. Comput. 25, 129–155 (2005)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Schnakenberg, J.: Simple chemical reaction systems with limiting cycle behaviour. J. Theor. Biol. 81, 389–400 (1979)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Schur, J.: Uber Potenzreihen die im Innern des Einheitskreises beschrankt sind. J . Reine Angew. Math. 147, 205–232 (1916)zbMATHGoogle Scholar
  24. 24.
    Shu, C.-W.: High order ENO and WENO schemes for computational fluid dynamics. In: Barth, T.J., Deconinck, H. (eds.) High-Order Methods for Computational Physics, Lecture Notes in Computational Science and Engineering, vol. 9, pp. 439–582. Springer (1999)Google Scholar
  25. 25.
    Spijker, M.N.: Stepsize conditions for general monotonicity in numerical initial value problems. SIAM J. Numer. Anal. 45, 1226–1245 (2007)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Wang, R., Spiteri, R.J.: Linear instability of the fifth-order WENO method. SIAM J. Numer. Anal. 45, 1871–1901 (2007)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Zhang, H., Sandu, A., Blaise, S.: Partitioned and implicit-explicit general linear methods for ordinary differential equations. J. Sci. Comput. 61, 119–144 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Università degli Studi di Napoli Federico IINapoliItaly
  2. 2.Arizona State UniversityTempeUSA
  3. 3.AGH University of Science and TechnologyKrakówPoland

Personalised recommendations