A self-adaptive iterative algorithm for the split common fixed point problems

  • Jing ZhaoEmail author
  • Dingfang Hou
Original Paper


In this paper, we use the dual variable to propose a self-adaptive iterative algorithm for solving the split common fixed point problems of averaged mappings in real Hilbert spaces. Under suitable conditions, we get the weak convergence of the proposed algorithm and give applications in the split feasibility problem and the split equality problem. Some numerical experiments are given to illustrate the efficiency of the proposed iterative algorithm. Our results improve and extend the corresponding results announced by many others.


Split common fixed-point problem Iterative algorithm Dual variable Averaged mapping Weak convergence Hilbert space 

Mathematics Subject Classification (2010)

47H09 47H10 47J05 54H25 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bauschke, H.H.: The approximation of fixed points of composition of nonexpansive mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38, 367–426 (1996)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Byrne, C.: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)CrossRefGoogle Scholar
  4. 4.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 20, 103–120 (2004)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Chang, S.S., Kim, J.K., Cho, Y.J., Sim, J.Y.: Weak and strong convergence theorems of solutions to split feasibility problem for nonspreading type mapping in Hilbert spaces. Fixed Point Theory Appl. 2014, 11 (2014)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Cegielski, A.: General method for solving the split common fixed point problem. J. Optim. Theory Appl. 165, 385–404 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algor. 8, 221–239 (1994)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Censor, Y., Gibalin, A., Reich, S.: Algorithms for the split variational inequality problem. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Censor, Y., Bortfeld, T., Martin, B., Trofimov, A.: A unified approach for inversion problems in intensity modulated radiation therapy. Phys. Med. Biol. 51, 2353–2365 (2006)CrossRefGoogle Scholar
  12. 12.
    Chen, P., Huang, J., Zhang, X.: A primal-dual fixed point algorithm for convex separable minimization with applications to image restoration. Inverse Probl. 29, 025011 (2013). (33pp)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Combettes, P.L.: The convex feasibility problem in image recovery. Adv. Imaging Electron Phys. 95, 155–270 (1996)CrossRefGoogle Scholar
  14. 14.
    Dong, Q.L., Lu, Y.Y., Yang, J.: The extragradient algorithm with inertial effects for solving the variational inequality. Optimization 65(12), 2217–2226 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Dong, Q.L., Yuan, H.B., Cho, Y.J., Rassias, Th.M.: Modified inertial Mann algorithm and Inertial CQ-algorithm for nonexpansive mappings. Optim. Lett. 12(1), 87–102 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dong, Q.L., Tang, Y.C., Cho, Y.J., Rassias, Th.M.: Optimal choice of the step length of the projection and contraction methods for solving the split feasibility problem. J. Glob. Optim. 71, 341–360 (2018)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Eslamian, M., Eskandani, G.Z., Raeisi, M.: Split common null point and common fixed point problems between Banach spaces and Hilbert spaces. Mediterr. J. Math. 14, 119,15 (2017)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Giang, D.M., Strodiot, J.J., Nguyen, V.H.: Strong convergence of an iterative method for solving the multiple-set split equality fixed point problem in a real Hilbert space. RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. 111, 983–998 (2017)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Gornicki, J.: Weak convergence theorems for asymptotically nonexpansive mappings in uniformly convex Banach spaces. Comment Math. Univ. Carolin. 301, 249–252 (1998)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Zhang, W., Han, D., Li, Z.: A self-adaptive projection method for solving the multiple-sets split feasibility problem. Inverse Probl. 25, 115001(16pp) (2009)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Lopez, G., Martin, V., Wang, F., Xu, H.K.: Solving the split feasibility problem without prior knowledge of matrix norms. Inverse Probl. 28, 085004 (2012)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Moudafi, A.: A note on the split common fixed point problem for quasi-nonexpansive operators. Nonlinear Anal. 74, 4083–4087 (2011)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Moudafi, A.: Alternating CQ-algorithms for convex feasibility and split fixed-point problems. J. Nonlinear Convex A. 15, 809–818 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Moudafi, A., Al-Shemas, E.: Simultaneous iterative methods for split equality problems and application. Transactions on Mathematical Programming and Applications 1, 1–11 (2013)Google Scholar
  26. 26.
    Qin, X., Wang, L.: A fixed point method for solving a split feasibility problem in Hilbert spaces, RACSAM Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat.
  27. 27.
    Qin, X., Petrusel, A., Yao, J.C.: CQ Iterative algorithms for fixed points of nonexpansive mappings and split feasibility problems in Hilbert spaces. J. Nonlinear Convex Anal. 19, 157–165 (2018)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Qu, B., Xiu, N.: A note on the CQ algorithm for the split feasibility problem. Inverse Probl. 21, 1655–1665 (2005)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wang, F.: On the convergence of CQ algorithm with variable steps for the split equality prblem. Numer. Algor. 74, 927–935 (2017)CrossRefGoogle Scholar
  30. 30.
    Wang, F.: A new method for split common fixed-point problem without priori knowledge of operator norms. J. Fixed Point Theory Appl. 19, 2427–2436 (2017)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Witthayarat, U., Abdou, A.A., Cho, Y.J.: Shrinking projection methods for solving split equilibrium problems and fixed point problems for asymptotically nonexpansive in Hilbert spaces. Fixed Point Theory Appl. 2015, 200 (2015)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Xu, H.K.: A variable krasnosel’skiĭ-mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefGoogle Scholar
  33. 33.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26(105018), 17 (2010)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Yao, Y., Yao, Z., Abdou, A.A., Cho, Y.J.: Self-adaptive algorithms for proximal split feasibility problems and strong convergence analysis. Fixed Point Theory Appl. 2015, 205 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Yang, L., Zhao, F., Kim, J.K.: The split common fixed point problem for demicontractive mappings in Banach spaces. J. Comput. Anal. Appl. 22(5), 858–863 (2017)MathSciNetGoogle Scholar
  36. 36.
    Yang, Q.: On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 302, 166–179 (2005)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Zhao, J., He, S.: Viscosity approximation methods for split common fixed-point problem of directed operators. Numer. Funct. Anal. Optim. 36, 528–547 (2015)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Zhao, J.: Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms. Optimization 64(12), 2619–2630 (2015)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Zhou, H., Wang, P.: Adaptively relaxed algorithms for solving the split feasibility problem with a new step size. Journal of Inequalities and Applications 2014, 448 (2014)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of ScienceCivil Aviation University of ChinaTianjinChina

Personalised recommendations