Advertisement

A preconditioned general two-step modulus-based matrix splitting iteration method for linear complementarity problems of H+-matrices

  • Huan Ren
  • Xiang WangEmail author
  • Xiao-Bin Tang
  • Teng Wang
Original Paper
  • 25 Downloads

Abstract

In this paper, we present a preconditioned general two-step modulus-based iteration method to solve a class of linear complementarity problems. Its convergence theory is proved when the system matrix A is an H+-matrix by using classical and new results from the theory of splitting. Numerical experiments show that the proposed methods are superior to the existing methods in actual implementation.

Keywords

Linear complementarity problem Modulus-based matrix splitting iteration method Preconditioner Two-step method H+-matrix 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Funding information

This work is financially supported by NNSF of China with grant nos.11461046 and 11801258; NSF of Jiangxi, China with grant nos.20181ACB20001, 20171BAB211006, and 20161ACB21005; and the Program for Young Excellent Talents, UIBE, China (18YQ04).

References

  1. 1.
    Bai, Z.-Z.: Modulus-based matrix splitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 17, 917–933 (2010)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Li, W., Zheng, H.: A preconditioned modulus-based iteration method for solving linear complementarity problems of H-matrices. Linear and Multilinear Algebra 64, 1390–1403 (2016)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Cottle, R.W., Pang, J.-S., Stone, R.E.: The Linear Complementarity Problem. Academic Press, San Diego (1992)zbMATHGoogle Scholar
  4. 4.
    Li, W.: A general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices. Appl. Math. Lett. 26, 1159–1164 (2013)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, Z.-Z., Wang, D.-R.: A class of parallel nonlinear multisplitting relaxation methods for the large sparse nonlinear complemenarity problems. Comput. Math. Appl. 32, 79–95 (1996)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Jiang, Y.-J., Zeng, J.-P.: A multiplicative Schwarz algorithm for the nonlinear complementarity problem with an M-function. Bull. Aust. Math. Soc. 28, 353–366 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Li, R., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for a class of restricted nonlinear complementarity problems. Numer. Alogrithms 75, 339–358 (2017)CrossRefGoogle Scholar
  8. 8.
    Li, R., Wang, Y., Yin, J.-F.: On the convergence of two-step modulus-based matrix splitting iteration methods for a restricted class of nonlinear complementarity problems with h +-matrices. Numer. Math. Theor. Meth. Appl. 11, 128–139 (2018)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Li, R., Yin, J.-F.: On the convergence of modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problems with h +-matrices. J. Comput. Appl. Math. 342, 202–209 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Chen, J.-S., Tseng, P.: An unconstrained smooth minimization reformulation of the second-order cone complementarity problem. Math. Program. 104, 293–327 (2005)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Zhang, L.-H., Yang, W.-H.: An efficient algorithm for second-order cone linear complementarity problems. Math. Comput. 83, 1701–1726 (2013)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Zhang, L.-H., Yang, W.-H., Shen, C.-G., Li, R.-C.: A krylov subspace method for large-scale second-order cone linear complementarity problem. SIAM J. Sci. Comput. 37, 2046–2075 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Zhang, L.-H., Yang, W.-H.: An efficient matrix splitting method for the second-order cone complementarity problem. SIAM J. Optim. 24, 1178–1205 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mutry, K.G.: Linear Complementarity, Linear and Nonlinear Programming. Heldermann Verlag, Berlin (1988)Google Scholar
  15. 15.
    Ferris, M.C., Pang, J.-S.: Engineering and economic applications of complementarity problems. SIAM Rev. 39, 669–713 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Bai, Z.-Z., Buccini, A., Hayami, K., Reichel, L., Yin, J.-F., Zheng, N.: Modulus-based iterative methods for constrained Tikhonov regularization. J. Comput. Appl. Math. 319, 1–13 (2017)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Zheng, N., Yin, J.-F.: On the convergence of projected triangular decomposition methods for pricing American options with stochastic volatility. Appl. Math. Comput. 223, 411–422 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mangasarian, O.L.: Solutions of symmetric linear complementarity problems by iterative methods. J. Optim. Theory Appl. 22, 465–485 (1977)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Yuan, D.-J., Song, Y.-Z.: Modified AOR methods for linear complementarity problem. Appl. Math. Comput. 140, 53–67 (2003)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Ren, H., Wang, X., Tang, X.-B., Wang, T.: The general two-sweep modulus-based matrix splitting iteration method for solving linear complementarity problems. Comput. Math. Appl.  https://doi.org/10.1016/j.camwa.2018.10.040 (2018)
  21. 21.
    Sberi, N.H., Edalatpandh, S.A.: Modification of iterative methods for solving linear complementarity problems. Eng. Comput. 30, 910–923 (2013)CrossRefGoogle Scholar
  22. 22.
    Hadjidimos, A., Tzoumas, M.: On the solution of the linear complementarity problem by generalized accelerated overrelaxation iterative method. J. Optim. Theory Appl. 165, 545–562 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems. Intern. J. Comput. Math. 63, 309–326 (1997)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Bai, Z.-Z.: On the convergence of the multisplitting methods for the linear complementarity problem. SIAM J. Matrix Anal. Appl. 21, 67–78 (1999)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel synchronous and chaotic methods. Reseaux et systemes repartis: Calculateurs Paralleles 13, 125–154 (2001)Google Scholar
  26. 26.
    Bai, Z.-Z., Evans, D.J.: Matrix multisplitting methods with applications to linear complementarity problems: parallel asynchronous methods. Int. J. Comput. Math. 79, 205–232 (2002)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Cvethović, L., Hadjidimos, A., Kostić, V.: On the choice of parameters in MAOR type splitting methods for the linear complementarity problem. Numer. Algorithms 67, 793–806 (2014)MathSciNetCrossRefGoogle Scholar
  28. 28.
    van Bokhoven, W.M.G.: Piecewise-Linear Modelling and Analysis. Proefschrift, Eindhoven (1981)Google Scholar
  29. 29.
    Zhang, L.-L., Ren, Z.-R.: Improved convergence theorems of modulus-based matrix splitting iteration methods for linear complementarity problems. Appl. Math. Lett. 26, 638–642 (2013)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Lin, X.-L., Zhao, Z.-Q.: Existence and uniqueness of symmetric positive solutions of 2n-order nonlinear singular boundary value problems. Appl. Math. Lett. 26, 692–698 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Zheng, N., Yin, J.-F.: Accelerated modulus-based matrix splitting iteration methods for linear complemenatrity problems. Numer. Algorithms 64, 245–262 (2013)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zheng, N., Yin, J.-F.: Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an h +-matrix. J. Comput. Appl. Math. 260, 281–293 (2014)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Zhang, L.-L.: Two-step modulus-based matrix splitting iteration method for linear compelementarity problems. Numer. Algorithms 57, 83–99 (2011)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Zhang, L.-L.: Two-step modulus-based synchronous multisplitting iteration methods for linear compelementarity problems. J. Comput. Math. 33, 100–112 (2015)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Zheng, H., Luo, J.: A preconditioned two-steps modulus-based matrix splitting iteration method for solving linear complementarity problems of H-matrices. Math. Numer. Sin. 40, 24–32 (2018)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems. Numer. Linear Algebra Appl. 20, 425–439 (2013)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous two-stage multisplitting iteration methods for linear complementarity problems. Numer. Algorithms 62, 59–77 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Wang, B., Xu, X., Meng, F.: Trigonometric collocation methods based on Lagrange basis polynomials for multi-frequency oscillatory second order differential equations. J. Comput. Appl. Math. 313, 185–201 (2017)MathSciNetCrossRefGoogle Scholar
  39. 39.
    Wang, X., Li, J., Fang, Z.: Development and analysis of Crank-Nicolson scheme for metamaterial Maxwell’s equations on nonuniform rectangular grids. Numer. Methods Partial Differential Eq. 34, 2040–2059 (2018)CrossRefGoogle Scholar
  40. 40.
    Wu, X.-P., Peng, X.-F., Li, W.: A preconditioned general modulus-based matrix splitting iteration method for linear complementarity problems of H-matrices. Numer. Algorithms.  https://doi.org/10.1007/s11075-018-0477-3 (2018)CrossRefGoogle Scholar
  41. 41.
    Bai, Z.-Z., Zhang, L.-L.: Modulus-based multigrid methods for linear complementarity problems. Numer. Linear Algerba Appl. 24, 1–15 (2017)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Frommer, A., Mayer, G.: Convergence of relaxed parallel multisplitting methods. Linear Algebra Appl. 119, 141–152 (1989)MathSciNetCrossRefGoogle Scholar
  43. 43.
    Berman, A., Plemmons, R.J.: Nonngeative matrices in the mathematical sciences phimadelphia(PA): SIAM (1994)Google Scholar
  44. 44.
    Hu, J.-G.: Estimates of ||b − 1 a|| and their applications. Math. Numer. Sin. 4, 272–282 (1982)Google Scholar
  45. 45.
    Bai, Z.-Z.: On the convergence of additive and multiplicative splitting iterations for systems of linear equations. J. Comput. Appl. Math. 154, 195–214 (2003)MathSciNetCrossRefGoogle Scholar
  46. 46.
    Bai, Z.-Z.: On SSOR-like preconditioners for non-Hermitian positive definite matrices. Numer. Linear Algerba Appl. 23, 37–60 (2016)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Huan Ren
    • 1
  • Xiang Wang
    • 1
    • 2
    Email author
  • Xiao-Bin Tang
    • 3
  • Teng Wang
    • 1
  1. 1.Department of Mathematics, School of SciencesNanchang UniversityNanchangPeople’s Republic of China
  2. 2.Numerical Simulation and High-Performance Computing Laboratory, School of SciencesNanchang UniversityNanchangPeople’s Republic of China
  3. 3.School of StatisticsUniversity of International Business and EconomicsBeijingPeople’s Republic of China

Personalised recommendations