Numerical Algorithms

, Volume 82, Issue 3, pp 895–908 | Cite as

Optimal interval length for the collocation of the Newton interpolation basis

  • J. M. Carnicer
  • Y. KhiarEmail author
  • J. M. Peña
Original Paper


It is known that the Lagrange interpolation problem at equidistant nodes is ill-conditioned. We explore the influence of the interval length in the computation of divided differences of the Newton interpolation formula. Condition numbers are computed for lower triangular matrices associated to the Newton interpolation formula at equidistant nodes. We consider the collocation matrices L and PL of the monic Newton basis and a normalized Newton basis, so that PL is the lower triangular Pascal matrix. In contrast to L, PL does not depend on the interval length, and we show that the Skeel condition number of the (n + 1) × (n + 1) lower triangular Pascal matrix is 3n. The -norm condition number of the collocation matrix L of the monic Newton basis is computed in terms of the interval length. The minimum asymptotic growth rate is achieved for intervals of length 3.


Newton interpolation formula Divided differences Condition number Pascal matrix 

Mathematics Subject Classification (2010)

41A05 65F35 15A12 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


Funding information

This work has been partially supported by the Spanish Research Grant MTM2015-65433-P (MINECO/FEDER), by Gobierno the Aragón and Fondo Social Europeo.


  1. 1.
    Alonso, P., Delgado, J., Peña, J.M.: Conditioning and accurate computations with Pascal matrices. J. Comput. Appl. Math. 8, 21–26 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Berrut, J.P., Trefethen, L.N.: Barycentric Lagrange interpolation. SIAM Rev. 46, 501–517 (2004)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Carnicer, J.M., Khiar, Y., Peña, J.M.: A matrix approach to the Newton formula and divided differences. In: Trends in Differential Equations and Applications, SEMA SIMAI Springer Series, vol. 8, pp. 107–123 (2016)Google Scholar
  4. 4.
    Carnicer, J.M., Khiar, Y., Peña, J.M.: Optimal stability of the Lagrange formula and conditioning of the Newton formula, to appear in J. Approx. Theory, MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chen, X., Liang, H., Wang, Y.: Total positivity of recursive matrices. Linear Algebra Appl. 471, 383–393 (2015)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Edelman, A., Strang, G.: Pascal matrices. Amer. Math. Month. 111, 189–197 (2004)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Gautschi, W.: Norm estimates for inverses of vandermonde matrices. Numer. Math. 23, 337–347 (1975)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Higham, N.J.: Accuracy and Stability of Numerical Algorithms. 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)Google Scholar
  9. 9.
    Karlin, S: Total Positivity. Stanford University Press, Stanford (1968)zbMATHGoogle Scholar
  10. 10.
    Lewis, B.: Revisiting the Pascal matrix. Amer. Math. Month. 117, 50–66 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Marco, A., Martínez, J.J.: A fast and accurate algorithm for solving Bernstein-Vandermonde linear systems. Linear Algebra Appl. 422, 616–628 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Olver, F.W., Lozier, D.W., Boisvert, R.F., Clark, C.W.: NIST Handbook of Mathematical Functions. Cambridge University Press, Cambridge (2010). Department of Commerce, National Institute of Standards and Technology, Washington, DC. zbMATHGoogle Scholar
  13. 13.
    Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Zeitschrift für Mathematik und Physik 46, 224–243 (1901)zbMATHGoogle Scholar
  14. 14.
    Steffensen, J.F.: Interpolation. 2nd edn. Chelsea Publishing Company, New York (1965)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Matemática Aplicada/IUMAUniversidad de ZaragozaZaragozaSpain

Personalised recommendations