Advertisement

Numerical Algorithms

, Volume 82, Issue 3, pp 809–842 | Cite as

Distributed algebraic tearing and interconnecting techniques

  • N. A. TselepidisEmail author
  • C. K. Filelis-Papadopoulos
  • G. A. Gravvanis
Original Paper
  • 52 Downloads

Abstract

A class of novel parallel preconditioning schemes in conjunction with a Krylov subspace iterative method for solving general sparse linear systems is presented. The proposed preconditioning schemes are domain decomposition methods that enforce the continuity of the solution on the subdomain interfaces using Lagrange multipliers, without requiring geometric information, namely algebraic tearing and interconnecting methods. Hence, they are applicable to a wide variety of problems as they are based only on the adjacency graph corresponding to the coefficient matrix. A modification of the proposed schemes, which improves performance while reducing the required operations is also presented. The algebraic tearing and interconnecting methods are designed for distributed systems with multicore nodes. Numerical results concerning the convergence behavior and the parallel performance of the proposed schemes are given along with discussions.

Keywords

Algebraic tearing and interconnecting Domain decomposition Hybrid parallel preconditioned Bi-CGSTAB 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors acknowledge the Greek Research and Technology Network (GRNET) for the provision of the National HPC facility ARIS under project PR004033-ScaleSciCompII.

References

  1. 1.
    Agullo, E., Giraud, L., Guermouche, A., Haidar, A., Roman, J.: Parallel algebraic domain decomposition solver for the solution of augmented systems. Adv. Eng. Softw. 60, 23–30 (2013)Google Scholar
  2. 2.
    Amestoy, P.R., Davis, T.A., Duff, I.S.: An approximate minimum degree ordering algorithm. SIAM J. Matrix Anal. Appl. 17(4), 886–905 (1996)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Anderson, E., Bai, Z., Dongarra, J., Greenbaum, A., McKenney, A., Croz, J., Hammarling, S., Demmel, J., Bischof, C., Sorensen, D.: LAPACK: a portable linear algebra library for high-performance computers. In: Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing ’90, pp. 2–11. IEEE Computer Society Press, Los Alamitos (1990)Google Scholar
  4. 4.
    Axelsson, O.: Iterative Solution Methods. Cambridge University Press, Cambridge (1996)zbMATHGoogle Scholar
  5. 5.
    Benzi, M.: Preconditioning techniques for large linear systems: a survey. J. Comput. Phys. 182(2), 418–477 (2002)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Benzi, M., Tûma, M.: A comparative study of sparse approximate inverse preconditioners. Appl. Numer. Math. 30(2), 305–340 (1999)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chapman, B., Jost, G., Van Der Pas, R.: Using Openmp: Portable Shared Memory Parallel Programming, vol. 10. MIT Press, Cambridge (2008)Google Scholar
  8. 8.
    Davis, T.A.: Direct Methods for Sparse Linear Systems. SIAM, Philadelphia (2006)zbMATHGoogle Scholar
  9. 9.
    Davis, T.A., Hu, Y.: The University of Florida Sparse Matrix Collection. ACM Trans. Math. Softw. (TOMS) 38(1), 1, 1–1, 25 (2011)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Dohrmann, C.R.: A preconditioner for substructuring based on constrained energy minimization. SIAM J. Sci. Comput. 25(1), 246–258 (2003)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Farhat, C., Lesoinne, M., LeTallec, P., Pierson, K., Rixen, D.: FETI-DP: a dual–primal unified FETI method—part I: a faster alternative to the two-level FETI method. Int. J. Numer. Methods Eng. 50(7), 1523–1544 (2001)zbMATHGoogle Scholar
  12. 12.
    Farhat, C., Mandel, J., Roux, F.X.: Optimal convergence properties of the FETI domain decomposition method. Comput. Methods Appl. Mech. Eng. 115(3), 365–385 (1994)MathSciNetGoogle Scholar
  13. 13.
    Farhat, C., Roux, F.-X.: A method of finite element tearing and interconnecting and its parallel solution algorithm. Int. J. Numer. Methods Eng. 32(6), 1205–1227 (1991)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Filelis-Papadopoulos, C.K., Gravvanis, G.A.: Generic approximate sparse inverse matrix techniques. Int. J. Comput. Methods 11(6) (2014)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Filelis-Papadopoulos, C.K., Gravvanis, G.A.: A class of generic factored and multi-level recursive approximate inverse techniques for solving general sparse systems. Eng. Comput. 33(1), 74–99 (2016)Google Scholar
  16. 16.
    Giraud, L., Haidar, A., Saad, Y.: Sparse approximations of the Schur complement for parallel algebraic hybrid solvers in 3D. Numerical Mathematics Theory, Methods and Applications 3(3), 276–294 (2010)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Golub, G., Van Loan, C.: Matrix Computations. Johns Hopkins Studies in the Mathematical Sciences. The Johns Hopkins University Press, Baltimore (2013)Google Scholar
  18. 18.
    Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming with the Message-Passing Interface, vol. 1. MIT Press, Cambridge (1999)Google Scholar
  19. 19.
    Grote, M.J., Huckle, T.: Parallel preconditioning with sparse approximate inverses. SIAM J. Sci. Comput. 18(3), 838–853 (1997)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Henson, V.E., Yang, U.M.: BoomerAMG: a parallel algebraic multigrid solver and preconditioner. Appl. Numer. Math. 41, 155–177 (2000)MathSciNetGoogle Scholar
  21. 21.
    Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Karypis, G., Kumar, V.: Multilevel k-way partitioning scheme for irregular graphs. J. Parallel Distrib. Comput. 48(1), 96–129 (1998)zbMATHGoogle Scholar
  23. 23.
    Klawonn, A., Rheinbach, O.: Highly scalable parallel domain decomposition methods with an application to biomechanics. ZAMM - J. Appl. Math. Mech. / Z. Angew. Math. Mech. 90(1), 5–32 (2010)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Lawson, C.L., Hanson, R.J., Kincaid, D.R., Krogh, F.T.: Basic Linear Algebra Subprograms for Fortran usage. ACM Trans. Math. Softw. (TOMS) 5(3), 308–323 (1979)zbMATHGoogle Scholar
  25. 25.
    Li, R., Saad, Y.: Low-rank correction methods for algebraic domain decomposition preconditioners. SIAM J. Matrix Anal. Appl. 38(3), 807–828 (2017)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Li, R., Xi, Y., Saad, Y.: Schur complement-based domain decomposition preconditioners with low-rank corrections. Numerical Linear Algebra with Applications 23(4), 706–729 (2016)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Li, Z., Saad, Y.: SchurRAS: a restricted version of the overlapping Schur complement preconditioner. SIAM J. Sci. Comput. 27(5), 1787–1801 (2006)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Mandel, J.: Balancing domain decomposition. Commun. Numer. Methods Eng. 9(3), 233–241 (1993)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Manguoglu, M.: A domain-decomposing parallel sparse linear system solver. J. Comput. Appl. Math. 236(3), 319–325 (2011)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Mathew, T.: Domain Decomposition Methods for the Numerical Solution of Partial Differential Equations, vol. 61. Springer Science & Business Media, Berlin (2008)Google Scholar
  31. 31.
    Moutafis, B.E., Filelis-Papadopoulos, C.K., Gravvanis, G.A.: Parallel multi-projection preconditioned methods based on semi-aggregation techniques. Journal of Computational Science 22, 45–54 (2017)MathSciNetGoogle Scholar
  32. 32.
    Naumov, M., Manguoglu, M., Sameh, A.H.: A tearing-based hybrid parallel sparse linear system solver. J. Comput. Appl. Math. 234(10), 3025–3038 (2010)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Polizzi, E., Sameh, A.H.: A parallel hybrid banded system solver: the SPIKE algorithm. Parallel Comput. 32(2), 177–194 (2006)MathSciNetGoogle Scholar
  34. 34.
    Pothen, A., Fan, C.-J.: Computing the block triangular form of a sparse matrix. ACM Trans. Math. Softw. (TOMS) 16(4), 303–324 (1990)MathSciNetzbMATHGoogle Scholar
  35. 35.
    Saad, Y.: Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia (2003)zbMATHGoogle Scholar
  36. 36.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)MathSciNetzbMATHGoogle Scholar
  37. 37.
    Schenk, O., Gärtner, K., Fichtner, W.: Efficient sparse LU factorization with left-right looking strategy on shared memory multiprocessors. BIT Numer. Math. 40 (1), 158–176 (2000)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Schenk, O., Gärtner, K.: Solving unsymmetric sparse systems of linear equations with PARDISO. Futur. Gener. Comput. Syst. 20(3), 475–487 (2004)zbMATHGoogle Scholar
  39. 39.
    Smith, B., Bjorstad, P., Gropp, W.: Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  40. 40.
    Toselli, A., Widlund, O.B.: Domain Decomposition Methods: Algorithms and Theory, vol. 34. Springer, Berlin (2005)zbMATHGoogle Scholar
  41. 41.
    Van der Vorst, H.A.: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems, vol. 13. Cambridge University Press, Cambridge (2003)zbMATHGoogle Scholar
  43. 43.
    Zhu, Y., Sameh, A.H.: PSPIKE+: a family of parallel hybrid sparse linear system solvers. J. Comput. Appl. Math. 311(Supplement C), 682–703 (2017)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. A. Tselepidis
    • 1
    Email author
  • C. K. Filelis-Papadopoulos
    • 1
  • G. A. Gravvanis
    • 1
  1. 1.Department of Electrical and Computer Engineering, School of EngineeringDemocritus University of ThraceKimmeriaGreece

Personalised recommendations