Advertisement

Filtered Krylov-like sequence method for symmetric eigenvalue problems

  • Cun-Qiang MiaoEmail author
Original Paper
  • 20 Downloads

Abstract

In this paper, by introducing a class of filtered Krylov-like subspaces, we present the filtered Krylov-like sequence method for computing one extreme eigenvalue and the corresponding eigenvector of symmetric matrices. The filtered Krylov-like sequence method can be desired to behave, practically, more effective and robust than the standard Krylov subspace method. We specifically select two kinds of polynomial filters, and relate them to some well-known methods. Some numerical experiments are carried out to demonstrate the convergence properties and the competitiveness of the new method.

Keywords

Eigenvalue Eigenvector Filtered Krylov-like subspace Polynomial filter Symmetric matrix 

Mathematics Subject Classification (2010)

65F15 65N25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The author is very much indebted to the referees for their constructive comments and valuable suggestions, which greatly improved the original manuscript of this paper.

Funding information

This study is supported by the Scientific Research Foundation of Shandong University of Science and Technology for Recruited Talents (No. 2017RCJJ067) and the Natural Science Foundation of Shandong Province (No. ZR2018BG002), P.R. China.

References

  1. 1.
    Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method. Linear Algebra Appl. 520, 215–241 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bai, Z.-Z., Miao, C.-Q.: On local quadratic convergence of inexact simplified Jacobi-Davidson method for interior eigenpairs of Hermitian eigenproblems. Appl. Math. Lett. 72, 23–28 (2017)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Davidson, E.R.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Fang, H.R., Saad, Y.: A filtered Lanczos procedure for extreme and interior eigenvalue problems. SIAM J. Sci. Comput. 34, A2220–A2246 (2012)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Genseberger, M., Sleijpen, G.L.G.: Alternative correction equations in the Jacobi-Davidson method. Numer. Linear Algebra Appl. 6, 235–253 (1999)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Golub, G.H., Van Loan, C.F.: Matrix computations, 3rd edn. The Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  7. 7.
    Lehoucq, R.B., Meerbergen, K.: Using generalized Cayley transformations within an inexact rational Krylov sequence method. SIAM J. Matrix Anal. Appl. 20, 131–148 (1998)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Miao, C.-Q.: A filtered-Davidson method for large symmetric eigenvalue problems. East Asian J. Appl. Math. 7, 21–34 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Miao, C.-Q.: Computing eigenpairs in augmented Krylov subspace produced by Jacobi-Davidson correction equation. J. Comput. Appl. Math. 343, 363–372 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Morgan, R.B., Scott, D.S.: Preconditioning the Lanczos algorithm for sparse symmetric eigenvalue problems. SIAM J. Sci. Comput. 14, 585–593 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Parlett, B.N.: The symmetric eigenvalue problem, SIAM, Philadelphia PA (1998)Google Scholar
  12. 12.
    Ruhe, A.: Rational Krylov: A practical algorithm for large sparse nonsymmetric matrix pencils. SIAM J. Sci. Comput. 19, 1535–1551 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Saad, Y.: Chebyshev acceleration techniques for solving nonsymmetric eigenvalue problems. Math. Comp. 42, 567–588 (1984)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Saad, Y.: Iterative methods for sparse linear systems, 2nd edn. SIAM, Philadelphia, Pennsylvania (2003)CrossRefGoogle Scholar
  15. 15.
    Saad, Y.: Numerical methods for large eigenvalue problems, 2nd edn. SIAM, Philadelphia (2011)CrossRefGoogle Scholar
  16. 16.
    Sleijpen, G.L.G., van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 401–425 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Sorensen, D.C.: Implicit application of polynomial filters in a k-step Arnoldi method. SIAM J. Matrix Anal. Appl. 13, 357–385 (1992)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Szyld, D.B., Xue, F.: Local convergence analysis of inexact Newton-type algorithms for general nonlinear eigenvalue problem. Numer. Math. 123, 333–362 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Ye, Q.: An adaptive block Lanczos algorithm. Numer. Algor. 12, 97–110 (1996)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Zhou, Y.-K., Saad, Y.: A Chebyshev-Davidson algorithm for large symmetric eigenproblems. SIAM J. Matrix Anal. Appl. 29, 954–971 (2007)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Mathematics and Systems ScienceShandong University of Science and TechnologyQingdaoPeople’s Republic of China

Personalised recommendations