Advertisement

A shrinking projection method for solving the split common null point problem in Banach spaces

  • Truong Minh Tuyen
  • Nguyen Song Ha
  • Nguyen Thi Thu Thuy
Original Paper

Abstract

In this paper, in order to solve the split common null point problem, we investigate a new explicit iteration method, base on the shrinking projection method and ε-enlargement of a maximal monotone operator. We also give some applications of our main results for the problem of split minimum point, multiple-sets split feasibility, and split variational inequality. Two numerical examples also are given to illustrate the effectiveness of the proposed algorithm.

Keywords

Split common null point problem Maximal monotone operator Metric resolvent ε-enlargement 

Mathematics Subject Classification (2010)

47H05 47H09 49J53 90C25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed point theory for Lipschitzian-type mappings with applications. Springer (2009)Google Scholar
  2. 2.
    Alber, Y.I.: Metric and generalized projections in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type, pp. 15–50 (1996)Google Scholar
  3. 3.
    Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator in Banach spaces. Panamer. Math. J. 4, 39–54 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Browder, F.E.: Nonlinear maximal monotone operators in Banach spaces. Math. Ann. 175, 89–113 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Burachik, R.S., Iusem, A.N., Svaiter, B.F.: Enlargement of monotone operators with applications to variational inequalities. Set-Valued Anal. 5, 159–180 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Burachik, R.S., Svaiter, B.F.: ε-Enlargements of maximal monotone operators in Banach spaces. Set-Valued Anal. 7, 117–132 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms. 8(2-4), 221–239 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. 21, 2071–2084 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Censor, Y., Gibali, A., Reich, R.: Algorithms for the split variational inequality problems. Numer. Algo. 59, 301–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dadashi, V.: Shrinking projection algorithms for the split common null point problem. Bull. Aust. Math. Soc. 99(2), 299–306 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Goebel, K., Kirk, W.A.: Topics in metric fixed point theory. Cambridge Stud. Adv Math., vol. 28. Cambridge Univ. Press, Cambridge (1990)CrossRefGoogle Scholar
  16. 16.
    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM J. Optim. 13, 938–945 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Mosco, U.: Convergence of convex sets and of solutions of variational inequalities. Adv. Math. 3, 510–585 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26(5), 055007 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Reich, S.: Book review: Geometry of Banach spaces, duality mappings and nonlinear problems. Bull. Amer. Math. Soc. 26, 367–370 (1992)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Rockafellar, R.T.: On the maximal monotonicity of subdifferential mappings. Pacific J. Math. 33(1), 209–216 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Amer. Math. Soc. 149, 75–88 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Takahashi, W.: Convex analysis and approximation of fixed points. Yokohama Publishers Yokohama (2000)Google Scholar
  24. 24.
    Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16(7), 1449–1459 (2015)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 281–287 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Tsukada, M.: Convergence of best approximations in a smooth Banach space. J. Approx. Theory. 40, 301–309 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefzbMATHGoogle Scholar
  30. 30.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 105018, 26 (2010)MathSciNetGoogle Scholar
  31. 31.
    Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Truong Minh Tuyen
    • 1
  • Nguyen Song Ha
    • 1
  • Nguyen Thi Thu Thuy
    • 2
  1. 1.Thai Nguyen University of ScienceThai NguyenVietnam
  2. 2.School of Applied Mathematics and InformaticsHanoi University of Science and TechnologyHanoiVietnam

Personalised recommendations