Advertisement

Numerical Algorithms

, Volume 80, Issue 1, pp 5–10 | Cite as

Reminiscences of Peter Wynn

  • C. BrezinskiEmail author
Editorial

References

  1. 1.
    Wynn, P.: A note on Salzer’s method for summing certain convergent series. J. Math. Phys. 35, 318–320 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Wynn, P.: On a procrustean technique for the numerical transformation of slowly convergent sequences and series. Math. Proc. Camb. Philos. Soc. 52, 663–671 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Wynn, P.: On a device for computing the e m(s n) transformation. Math. Tables Aids Comput. 10, 91–96 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Wynn, P.: On a cubically convergent process for determining the zeros of certain functions. Math. Tables Aids Comput. 10, 97–100 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Wynn, P.: Central difference and other forms of the Euler transformation. Quart. J. Mech. Appl. Math. 9, 249–256 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wynn, P.: On the propagation of error in certain non–linear algorithms. Numer. Math. 1, 142–149 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Wynn, P.: A sufficient condition for the instability of the q–d algorithm. Numer. Math. 1, 203–207 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Wynn, P.: Converging factors for continued fractions. Numer. Math. 1, 272–307; 308–320 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Wynn, P.: ÜBer einen Interpolations–algorithmus und gewisse andere Formeln, die in der Theorie der Interpolation durch rationale Funktionen bestehen. Numer. Math. 2, 151–182 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wynn, P.: The rational approximation of functions which are formally defined by a power series expansion. Math. Comput. 14, 147–186 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Wynn, P.: Confluent forms of certain non–linear algorithms. Arch. Math. 11, 233–236 (1960)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wynn, P.: A note on a confluent form of the ε–algorithm. Arch. Math. 11, 237–240 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Wynn, P.: A comparison between the numerical performances of the Euler transformation and the ε–algorithm. Revue Française de Traitement de l’information Chiffres 1, 23–29 (1961)zbMATHGoogle Scholar
  14. 14.
    Wynn, P.: On the tabulation of indefinite integrals. BIT 1, 286–290 (1961)CrossRefzbMATHGoogle Scholar
  15. 15.
    Wynn, P.: L’ε–algorithmo e la tavola di Padé. Rend. Mat. Roma. 20, 403–408 (1961)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wynn, P.: The epsilon algorithm and operational formulas of numerical analysis. Math. Comput. 15, 151–158 (1961)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wynn, P.: On repeated application of the epsilon algorithm. Revue Française de Traitement de l’information Chiffres 4, 19–22 (1961)zbMATHGoogle Scholar
  18. 18.
    Wynn, P.: The numerical transformation of slowly convergent series by methods of comparison. Revue Française de Traitement de l’information Chiffres 4, 177–210 (1961)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Wynn, P.: A sufficient condition for the instability of the ε–algorithm. Nieuw Arch. Wiskd. 9, 117–119 (1961)MathSciNetzbMATHGoogle Scholar
  20. 20.
    Wynn, P.: A note on a method of Bradshaw for transforming slowly convergent series and continued fractions. Amer. Math. Monthly 69, 883–889 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Wynn, P.: Upon a second confluent form the ε–algorithm. Proc. Glasgow Math. Assoc. 5, 160–165 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Wynn, P.: Acceleration techniques for iterated vector and matrix problems. Math. Comput. 16, 301–322 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Wynn, P.: A comparison technique for the numerical transformation of slowly convergent series based on the use of rational functions. Numer. Math. 4, 8–14 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wynn, P.: Numerical efficiency profile functions. Koninkl. Nederl. Akad. Wet. 65A, 118–126 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Wynn, P.: The numerical efficiency of certain continued fraction expansions. Koninkl. Nederl. Akad. Wet. 65A, 127–148 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Wynn, P.: On a connection between two techniques for the numerical transformation of slowly convergent series. Koninkl. Nederl. Akad. Wet. 65A, 149–154 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wynn, P.: Una nota su un analogo infinitesimale del q–d algoritmo. Rend. Mat. Roma 21, 77–85 (1962)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Wynn, P.: A note on fitting certain types of experimental data. Stat. Neerl. 16, 145–150 (1962)MathSciNetCrossRefGoogle Scholar
  29. 29.
    Wynn, P.: Note on the solution of a certain boundary–value problem. BIT 2, 61–64 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Wynn, P.: An arsenal of ALGOL procedures for complex arithmetic. BIT 2, 232–255 (1962)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Wynn, P.: The numerical transformation of slowly convergent series by methods of comparison. II. Revue Française de Traitement de l’information Chiffres 5, 65–88 (1962)MathSciNetzbMATHGoogle Scholar
  32. 32.
    Wynn, P.: Acceleration technique in numerical analysis with particular reference to problems in one independent variable. In: Popplewell, C.M. (ed.) Information Processing 1962, Proceedings of IFIP Congress 62, Munich, 27 August – 1st September 1962, pp. 149–156. North–Holland, Amsterdam (1963)Google Scholar
  33. 33.
    Wynn, P.: Singular rules for certain non–linear algorithms. BIT 3, 175–195 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wynn, P.: Note on a converging factor for a certain continued fraction. Numer. Math. 5, 332–352 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Wynn, P.: On a connection between the first and the second confluent form of the ε–algorithm. Niew. Arch. Wisk. 11, 19–21 (1963)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Wynn, P.: Continued fractions whose coefficients obey a non–commutative law of multiplication. Arch. Ration. Mech. Anal. 12, 273–312 (1963)CrossRefzbMATHGoogle Scholar
  37. 37.
    Wynn, P.: A numerical study of a result of Stieltjes. Revue Française de Traitement de l’information Chiffres 6, 175–186 (1963)MathSciNetzbMATHGoogle Scholar
  38. 38.
    Wynn, P.: Converging factors for the Weber parabolic cylinder function of complex argument. Proc. Kon. Nederl. Akad. Weten. 66, 721–754 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wynn, P.: Partial differential equations associated with certain non–linear algorithms. Z. Angew. Math. Phys. 15, 273–289 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wynn, P.: General purpose vector epsilon–algorithm Algol procedures. Numer. Math. 6, 22–36 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wynn, P.: On some recent developments in the theory and application of continued fractions. SIAM J. Numer. Anal., Ser. B. 1, 177–197 (1964)MathSciNetzbMATHGoogle Scholar
  42. 42.
    Wynn, P.: Four lectures on the numerical application of continued fractions. In: Ghizzetti, A. (ed.) Alcune Questioni di Analisi Numerica. Series: C.I.M.E. Summer Schools, vol. 35, pp. 111–251. Springer, Heidelberg (1965)Google Scholar
  43. 43.
    Wynn, P.: A note on programming repeated application of the epsilon–algorithm. Revue Française de Traitement de l’information Chiffres 8, 23–62 (1965)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Wynn, P.: Upon systems of recursions which obtain among the quotients of the Padé table. Numer. Math. 8, 264–269 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Wynn, P.: On the convergence and stability of the epsilon algorithm. SIAM J. Numer. Anal. 3, 91–122 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wynn, P.: Upon a Conjecture Concerning a Method for Solving Linear Equations, and Certain Other Matters, MRC Technical Summary Report 626, University of Wisconsin, Madison (1966)Google Scholar
  47. 47.
    Wynn, P.: Complex Numbers and Other Extensions to the Clifford Algebra with an Application to the Theory of Continued Fractions, MRC Technical Summary Report 646, University of Wisconsin, Madison (1966)Google Scholar
  48. 48.
    Wynn, P.: Upon the Diagonal Sequences of the Padé Table, MRC Technical Summary Report 660, University of Wisconsin, Madison (1966)Google Scholar
  49. 49.
    Wynn, P.: Accelerating the Convergence of a Monotonic Sequence by a Method of Intercalation, MRC Technical Summary Report 674, University of Wisconsin, Madison (1966)Google Scholar
  50. 50.
    Wynn, P.: Upon an Invariant Associated with the Epsilon Algorithm, MRC Technical Summary Report 675, University of Wisconsin, Madison (1966)Google Scholar
  51. 51.
    Wynn, P.: On the computation of certain functions of large argument and parameter. BIT 6, 228–259 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Wynn, P.: An arsenal of Algol procedures for the evaluation of continued fractions and for effecting the epsilon algorithm. Revue Française de Traitement de l’information Chiffres 9, 327–362 (1966)MathSciNetGoogle Scholar
  53. 53.
    Wynn, P.: A general system of orthogonal polynomials. Quart. J. Math. Oxford (2) 18, 81–96 (1967)MathSciNetCrossRefzbMATHGoogle Scholar
  54. 54.
    Wynn, P.: Transformations to accelerate the convergence of Fourier series. In: Mond, B., Blanch, G. (eds.) Gertrude Blanch Anniversary Volume, pp. 339–379. Wright Patterson Air Force Base (1967)Google Scholar
  55. 55.
    Wynn, P.: A Note on the Convergence of Certain Noncommutative Continued Fractions, MRC Technical Summary Report 750, University of Wisconsin, Madison (1967)Google Scholar
  56. 56.
    Wynn, P.: Upon the Padé table derived from a Stieltjes series. SIAM J. Numer. Anal. 5, 805–834 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    Wynn, P.: Vector continued fractions. Linear Algebra Appl. 1, 357–395 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  58. 58.
    Wynn, P.: Upon the definition of an integral as the limit of a continued fraction. Arch. Ration. Mech. Anal. 28, 83–148 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    Wynn, P.: Zur Theorie der mit gewissen speziellen Funktionen verknüpften Padéschen Tafeln. Math. Z. 109, 66–70 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  60. 60.
    Wynn, P.: Upon a Recursive System of Flexible Rings Permitting Involution, Report CRM–50, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1970)Google Scholar
  61. 61.
    Wynn, P.: Upon the Inverse of Formal Power Series over Certain Algebra, Report CRM–53, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1970)Google Scholar
  62. 62.
    Wynn, P.: Upon a Hierarchy of Epsilon Arrays, Technical Report 46, Louisiana State University, New Orleans (1970)Google Scholar
  63. 63.
    Wynn, P.: A note on the generalised Euler transformation. Comput. J. 14, 437–441 (1971). Errata 15, 175 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  64. 64.
    Wynn, P.: The Abstract Theory of the Epsilon Algorithm, Report CRM–74, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1971)Google Scholar
  65. 65.
    Wynn, P.: A Note upon Totally Monotone Sequences, Report CRM–139, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1971)Google Scholar
  66. 66.
    Wynn, P.: A transformation of series. Calcolo 8, 255–272 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  67. 67.
    Wynn, P.: Difference–differential recursions for Padé quotients. Proc. London Math. Soc., S. 3 23, 283–300 (1971)CrossRefzbMATHGoogle Scholar
  68. 68.
    Wynn, P.: Upon the generalized inverse of a formal power series with vector valued coefficients. Compo. Math. 23, 453–460 (1971)zbMATHGoogle Scholar
  69. 69.
    Wynn, P.: ÜBer orthogonale Polynome und ein assoziiertes Momentproblem. Math. Scand. 29, 104–112 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  70. 70.
    Wynn, P.: On an extension of a result due to Pólya. J. Reine Angew. Math. 248, 127–132 (1971)MathSciNetzbMATHGoogle Scholar
  71. 71.
    Wynn, P.: Convergence acceleration by a method of intercalation. Computing 9, 267–273 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  72. 72.
    Wynn, P.: Invariants associated with the epsilon algorithm and its first confluent form. Rend. Circ. Mat. Palermo. 21, 31–41 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  73. 73.
    Wynn, P.: Hierarchies of arrays and function sequences associated with the epsilon algorithm and its first confluent form. Rend. Mat. Roma, 5, Serie VI, 819–852 (1972)Google Scholar
  74. 74.
    Wynn, P.: A Note on a Partial Differential Equation, Report CRM–22, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1972)Google Scholar
  75. 75.
    Wynn, P.: Sur les suites totalement monotones. C.R. Acad. Sci. Paris 275A, 1065–1068 (1972)MathSciNetzbMATHGoogle Scholar
  76. 76.
    Wynn, P.: Transformation de séries à l’aide de l’ε–algorithm. C.R. Acad. Sci. Paris 275A, 1351–1353 (1972)zbMATHGoogle Scholar
  77. 77.
    Wynn, P.: Upon a convergence result in the theory of the Padé table. Trans. Amer. Math. Soc. 165, 239–249 (1972)MathSciNetzbMATHGoogle Scholar
  78. 78.
    Wynn, P.: A Convergence Theory of Some Methods of Integration, Report CRM–193, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1972)Google Scholar
  79. 79.
    Wynn, P.: The Partial Differential Equation of the Padé Surface, Report CRM–197, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1972)Google Scholar
  80. 80.
    Wynn, P.: The Algebra of Certain Formal Power Series, Report CRM–216, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1972)Google Scholar
  81. 81.
    Wynn, P.: Upon some continuous prediction algorithms. I. Calcolo 9, 197–234 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  82. 82.
    Wynn, P.: Upon some continuous prediction algorithms. II. Calcolo 9, 235–278 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  83. 83.
    Wynn, P.: On Some Extensions of Euclid’s Algorithm, and Some Consequences Thereof, Report CRM, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1972)Google Scholar
  84. 84.
    Wynn, P.: Distributing Rings Permitting Involution, Report CRM–281, Centre De Recherches Mathématiques, Université de Montréal, Montréal (1973)Google Scholar
  85. 85.
    Wynn, P.: On the zeros of certain confluent hypergeometric functions. Proc. Amer. Math. Soc. 40, 173–183 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  86. 86.
    Wynn, P.: Accélération de la convergence de séries d’opérateurs en analyse numérique. C.R. Acad. Sci. Paris 276A, 803–806 (1973)zbMATHGoogle Scholar
  87. 87.
    Wynn, P.: On the intersection of two classes of functions. Rev. Roumaine Math. Pures Appl. 19, 949–959 (1974)MathSciNetzbMATHGoogle Scholar
  88. 88.
    Wynn, P.: Extremal properties of Padé quotients. Acta Math. Hungar. 25, 291–298 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  89. 89.
    Wynn, P.: Sur l’équation aux dérivées partielles de la surface de Padé. C.R. Acad. Sci. Paris 278A, 847–850 (1974)zbMATHGoogle Scholar
  90. 90.
    Wynn, P.: A Numerical Method for Estimating Parameters in Mathematical Models, Report CRM–443, Centre de Recherches Mathématiques, Université de Montréal, Montréal (1974)Google Scholar
  91. 91.
    Wynn, P.: Some recent developments in the theories of continued fractions and the Padé table. Rocky Mountain J. Math. 4, 297–324 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  92. 92.
    Wynn, P.: How to integrate without integrating, Colloque Euromech 58, Toulon, 1975, unpublishedGoogle Scholar
  93. 93.
    Wynn, P.: A class of functions connected with the approximate solution of operator equations, Workshop on Padé approximants, Marseille, 1975, unpublishedGoogle Scholar
  94. 94.
    Wynn, P.: Upon a class of functions connected with the approximate solution of operator equations. Ann. Mat. Pura Appl. 104, 1–29 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  95. 95.
    Wynn, P.: Five lectures on the numerical application of continued fractions, Orientation Lecture Series 5, MRC, University of Wisconsin, MadisonGoogle Scholar
  96. 96.
    Wynn, P.: The algebra of certain formal power series. Riv. Mat. Uni. Parma 2, 155–176 (1976)MathSciNetzbMATHGoogle Scholar
  97. 97.
    Wynn, P.: An Array of Functions, Report, School of Computer Science, McGill University, Montreal (1976)Google Scholar
  98. 98.
    Wynn, P.: A Continued Fraction Transformation of the Euler–MacLaurin Series, Report, School of Computer Science, McGill University, Montreal (1976)Google Scholar
  99. 99.
    Wynn, P.: The Evaluation of Singular and Highly Oscillatory Integrals by Use of the Antiderivative, Report, School of Computer Science, McGill University, Montreal (1976)Google Scholar
  100. 100.
    Wynn, P.: A convergence theory of some methods of integration. J. Reine Angew. Math. 285, 181–208 (1976)MathSciNetzbMATHGoogle Scholar
  101. 101.
    Wynn, P.: The calculus of finite differences over certain systems of numbers. Calcolo 14, 303–341 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  102. 102.
    Wynn, P.: The transformation of series by the use of Padé quotients and more general approximants. In: Saff, E.B., Varga, R.S. (eds.) Padé and Rational Approximation. Theory and Applications, pp. 121–144. Academic Press, New York (1977)Google Scholar
  103. 103.
    Wynn, P.: The convergence of approximating fractions. Bol. Soc. Mat. Mexicana 26, 57–71 (1981)MathSciNetzbMATHGoogle Scholar
  104. 104.
    Wynn, P.: The work of E.B. Christoffel on the theory of continued fractions. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel: the Influence of His Work on Mathematics and the Physical Sciences, pp. 190–202. Birkhäuser, Basel (1981)Google Scholar
  105. 105.
    Wynn, P.: Remark upon developments in the theories of the moment problem and of quadrature, subsequent to the work of Christoffel. In: Butzer, P.L., Fehér, F. (eds.) E.B. Christoffel: the Influence of His Work on Mathematics and the Physical Sciences, pp. 731–734. Birkhäuser, Basel (1981)Google Scholar

Translations

  1. 106.
    Khintchine, A.Y.: Continued Fractions, Translated from Russian by Peter Wynn, P. Noordhoff N.V., Groningen (1963)Google Scholar
  2. 107.
    Khovanskii, A.N.: The Application of Continued Fractions and Their Generalizations to Problems in Approximation Theory. Translated from Russian by Peter Wynn, P. Noordhoff N.V., Groningen (1963)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratoire Paul Painlevé, UMR CNRS 8524, UFR de Mathématiques Pures et AppliquéesUniversité de LilleVilleneuve d’Ascq cedexFrance

Personalised recommendations