Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Modified Kantorovich operators with better approximation properties

  • 123 Accesses

  • 7 Citations


In the present paper, we study a new kind of Bernstein-Kantorovich-type operators. Here, we discuss a uniform convergence estimate for this modified form. Also, some direct estimates, which involve the asymptotic-type results, are established. Some numerical examples which show the relevance of the results are considered.

This is a preview of subscription content, log in to check access.


  1. 1.

    Acu, A.M., Rasa, I.: New estimates for the differences of positive linear operators. Numer. Algo. 73(3), 775–789 (2016)

  2. 2.

    Arab, H.K., Dehghan, M., Eslahchi, M.R.: A new approach to improve the order of approximation of the Bernstein operators: theory and applications. Numer. Algo. 77(1), 111–150 (2018)

  3. 3.

    Bernstein, S.N.: Démonstration du théorème de Weierstrass fondée sur le calcul des probabilités. Communications de la Société Mathematique de Kharkov 13, 1–2 (1913)

  4. 4.

    Dhamija, M., Deo, N.: Better approximation results by Bernstein-Kantorovich operators. Lobachevskii J Math. 38(1), 94–100 (2017)

  5. 5.

    DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)

  6. 6.

    Gavrea, I., Ivan, M.: An answer to a conjecture on Bernstein operators. J. Math. Anal. Appl. 390(1), 86–92 (2012)

  7. 7.

    Gonska, H., Rasa, I.: Asymptotic behavior of differentiated Bernstein polynomials. Mat. Vesnik 61(1), 53–60 (2009)

  8. 8.

    Gonska, H.: On the degree of approximation in Voronovskaja’s theorem. Studia Univ. Babeş, Bolyai Math. 52(3), 103–115 (2007)

  9. 9.

    Gonska, H.: Quantitative Aussagen zur Approximation durch positive lineare Operatoren, Ph. D. thesis, Duisburg Universit at Duisburg (1979)

  10. 10.

    Gupta, V., Tachev, G.: Approximation with positive linear operators and linear combinations. Springer, Berlin (2017)

  11. 11.

    Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, Berlin (2014)

  12. 12.

    Kantorovich, L.V.: Sur certain développements suivant les polynômes de la forme de S. Bernstein, I, II. C.R. Acad. URSS 563–568, 595–600 (1930)

  13. 13.

    Özarslan, M.A., Duman, O.: Smoothness properties of modified Bernstein-Kantorovich operators. Numer. Funct. Anal. Optim. 37(1), 92–105 (2016)

  14. 14.

    Popoviciu, T.: Sur l’approximation des fonctions covexes d’ordre supérieur. Mathematica (Cluj) 10, 49–54 (1934)

  15. 15.

    Popoviciu, T.: Sur l’approximation des fonctions continues d’une variable réelle par des polynomes. Ann. Sci. Univ. Iasi, Sect. I, Math 28, 208 (1942)

  16. 16.

    Tachev, G.: The complete asymptotic expansion for Bernstein operators. J. Math. Anal. Appl. 385(2), 1179–1183 (2012)

  17. 17.

    Voronovskaja, E.: Determination de la forme asymptotique d’approximation des fonctions par les polynomes de M. bernstein. Dokl. Akad. Nauk SSSR 4, 86–92 (1932)

  18. 18.

    Weierstrass, K.G.: Über Die Analytische Darstellbarkeit Sogenannter Willkürlicher Funktionen Einer Reellen Veränderlichen, Sitzungsber. Akad. Berlin, 1885, 633-639, 789-805. [Also In: Mathematische Werke, vol. 3, 1-37, Berlin: Mayer & Müller 1903]

Download references


The work of the third author was financed by the Lucian Blaga University of Sibiu research grant LBUS-IRG-2017-03.

Author information

Correspondence to Ana-Maria Acu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, V., Tachev, G. & Acu, A. Modified Kantorovich operators with better approximation properties. Numer Algor 81, 125–149 (2019). https://doi.org/10.1007/s11075-018-0538-7

Download citation


  • Approximation by polynomials
  • Kantorovich polynomials
  • Voronovskaja-type theorem

Mathematics Subject Classification (2010)

  • 41A25
  • 41A36