Numerical Algorithms

, Volume 80, Issue 3, pp 687–707 | Cite as

Sparse matrix computation for air quality forecast data assimilation

  • Michael K. Ng
  • Zhaochen ZhuEmail author
Original Paper


In this paper, we study the ensemble Kalman filter (EnKF) method for chemical species simulation in air quality forecast data assimilation. The main contribution of this paper is that we study the sparse observation data and make use of the matrix structure of the EnKF update equations to design an algorithm for the purpose of computing the analysis of chemical species in an air quality forecast system efficiently. The proposed method can also handle the combined observations from multiple chemical species together. We applied the proposed method and tested its performance in real air quality data assimilation. Numerical examples are presented to demonstrate the efficiency of the proposed computation method for EnKF updating and the effectiveness of the proposed method for NO2, NO, CO, SO2, O3, PM2.5, and PM10 prediction in air quality forecast data assimilation.


Data assimilation Ensemble Kalman filter Air quality prediction Matrix computation Block matrix 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Research supported in part by HKBU RC-ICRS/16-17/03-MATH and HKRGC GRF 12306616 and 12200317.


  1. 1.
    Stockwell, W.R., Middleton, P., Chang, J.S., Tang, X.: The second generation regional acid deposition model chemical mechanism for regional air quality modeling. J. Geophys. Res. Atmos. 95, 16343–16367 (1990)CrossRefGoogle Scholar
  2. 2.
    Nenes, A., Pandis, S.N., Pilinis, C.: Continued development and testing of a new thermodynamic aerosol module for urban and regional air quality models. Atmos. Environ. 33, 1553–1560 (1999)CrossRefGoogle Scholar
  3. 3.
    Binkowski, F.S., Roselle, S.J.: Models–3 community multiscale air quality (CMAQ) model aerosol component 1. Model description. J. Geophys. Res. Atmos., 108, D64183 (2003)Google Scholar
  4. 4.
    Eder, B., Kang, D., Mathur, R., Yu, S., Schere, K.: An operational evaluation of the Eta-CMAQ air quality forecast model. Atmos. Environ. 40, 4894–4905 (2006)CrossRefGoogle Scholar
  5. 5.
    Tang, Y., Carmichael, G.R., Thongboonchoo, N., Chai, T., Horowitz, L.W., Pierce, R.B., Sachse, G.W.: Influence of lateral and top boundary conditions on regional air quality prediction: a multiscale study coupling regional and global chemical transport models. J. Geophys. Res. Atmos., 112, D10S18 (2007)Google Scholar
  6. 6.
    Brasseur, G.P., Hauglustaine, D.A., Walters, S., Rasch, P.J., Müller, J.F., Granier, C., Tie, X.X.: MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description. J. Geophys. Res. Atmos. 103, 28265–28289 (1998)CrossRefGoogle Scholar
  7. 7.
    Carmichael, G.R., Sandu, A., Chai, T., Daescu, D.N., Constantinescu, E.M., Tang, Y.: Predicting air quality: improvements through advanced methods to integrate models and measurements. J. Comput. Phys. 227, 3540–3571 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Sandu, A., Daescu, D.N., Carmichael, G.R., Chai, T.: Adjoint sensitivity analysis of regional air quality models. J. Comput. Phys. 204, 222–252 (2005)CrossRefzbMATHGoogle Scholar
  9. 9.
    Chai, T., Carmichael, G.R., Sandu, A., Tang, Y., Daescu, D.N.: Chemical data assimilation of transport and chemical evolution over the pacific (TRACE-P) aircraft measurements. J. Geophys. Res. Atmos., 111, D02301 (2006)Google Scholar
  10. 10.
    Constantinescu, E.M., Chai, T., Sandu, A., Carmichael, G.R.: Autoregressive models of background errors for chemical data assimilation. J. Geophys. Res. Atmos., 112, D12309 (2007)Google Scholar
  11. 11.
    Fisher, M., Lary, D.J.: Lagrangian four-dimensional variational data assimilation of chemical species. Q. J. R. Meteorol. Soc. 121, 1681–1704 (1995)CrossRefGoogle Scholar
  12. 12.
    Elbern, H., Schmidt, H., Talagrand, O., Ebel, A: 4D-variational data assimilation with an adjoint air quality model for emission analysis. Environ. Model. Softw. 15, 539–548 (2000)CrossRefGoogle Scholar
  13. 13.
    Errera, Q., Fonteyn, D.: Four-dimensional variational chemical assimilation of CRISTA stratospheric measurements. J. Geophys. Res. 106, 12253 (2001)CrossRefGoogle Scholar
  14. 14.
    Houtekamer, P.L., Mitchell, H.L.: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Weather Rev. 129, 123–137 (2001)CrossRefGoogle Scholar
  15. 15.
    Sandu, A., Constantinescu, E., Carmichael, G., Chai, T., Daescu, D., Seinfeld, J.: Ensemble methods for dynamic data assimilation of chemical observations in atmospheric models. J. Algorithms Comput. Technol., 5, 667–692 (2011)Google Scholar
  16. 16.
    Ott, E., Hunt, B.R., Szunyogh, I., Zimin, A.V.A., Kostelich, E.J., Corazza, M., Kalnay, E., Patil, D.J., Yorke, J.a.: A local ensemble Kalman filter for atmospheric data assimilation. Tellus A. 56, 66 (2002)Google Scholar
  17. 17.
    Le Dimet, F.X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: Theoretical aspects. Tellus A. 38, 97–110 (1986)CrossRefGoogle Scholar
  18. 18.
    Courtier, P., Talagrand, O.: Variational assimilation of meteorological observations with the adjoint vorticity equation. II: Numerical results. Q. J. R. Meteorol. Soc. 113, 1329–1347 (1987)CrossRefGoogle Scholar
  19. 19.
    Daley, R.: Generation of global multivariate error covariances by singular-value decomposition of the linear balance equation. Mon. Weather Rev. 124, 2574–2587 (1996)CrossRefGoogle Scholar
  20. 20.
    Houtekamer, P.L., Zhang, F., Houtekamer, P.L., Zhang, F.: Review of the ensemble Kalman filter for atmospheric data assimilation. Mon. Weather. Rev. MWR-D-15-0440.1 (2016)Google Scholar
  21. 21.
    Campbell, W.F., Bishop, C.H., Hodyss, D.: Vertical covariance localization for satellite radiances in ensemble Kalman filters. Mon. Weather Rev. 138, 282–290 (2010)CrossRefGoogle Scholar
  22. 22.
    Lei, L., Whitaker, J.S.: Model space localization is not always better than observation space localization for assimilation of satellite radiances. Mon. Weather Rev. 143, 3948–3955 (2015)CrossRefGoogle Scholar
  23. 23.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. J. Basic Eng. 82, 35 (1960)CrossRefGoogle Scholar
  24. 24.
    Ghil, M., Malanotte-Rizzoli, P.: Data assimilation in meteorology and oceanography. Adv. Geophys. 33, 141–266 (1991)CrossRefGoogle Scholar
  25. 25.
    Gillijns, S., Mendoza, O.B., Chandrasekar, J., De Moor, B.L.R., Bernstein, D.S., Ridley, A.: What is the ensemble Kalman filter and how well does it work? In: American Control Conference, p. 6. IEEE. (2006)Google Scholar
  26. 26.
    Evensen, G.: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo mthods to forecast error statistics. J. Geophys. Res. 99, 10143–10162 (1994)CrossRefGoogle Scholar
  27. 27.
    Evensen, G.: The ensemble Kalman filter: theoretical formulation and practical implementation. Ocean Dyn. 53, 343–367 (2003)CrossRefGoogle Scholar
  28. 28.
    Bishop, C.H., Etherton, B.J., Majumdar, S.J.: Adaptive sampling with the ensemble transform Kalman filter. Part I: Theoretical aspects. Mon. Weather Rev. 129, 420–436 (2001)CrossRefGoogle Scholar
  29. 29.
    Gaspari, G., Gaspari, G., Cohn, S.E., Cohn, S.E.: Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 125, 723–757 (1999)CrossRefGoogle Scholar
  30. 30.
    Hamill, T.M., Whitaker, J.S., Snyder, C.: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Weather Rev. 129, 2776–2790 (2001)CrossRefGoogle Scholar
  31. 31.
    Constantinescu, E.M., Sandu, A., Chai, T., Carmichael, G.R.: Ensemble-based chemical data assimilation. II: Covariance localization. Q. J. R. Meteorol. Soc. 133, 1245–1256 (2007)CrossRefGoogle Scholar
  32. 32.
    Byun, D.W., Ching, J.K.S.: Science algorithms of the EPA Models-3 community multiscale air quality (CMAQ) modeling system. US Environ. Prot. Agency, Off. Res. Dev. Washington, DC, USA. 44, 1765–1778 (1999)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of MathematicsHong Kong Baptist UniversityKowloon TongHong Kong

Personalised recommendations