Some second-order đ schemes combined with finite element method for nonlinear fractional cable equation
- 163 Downloads
- 2 Citations
Abstract
In this article, some second-order time discrete schemes covering parameter đ combined with Galerkin finite element (FE) method are proposed and analyzed for looking for the numerical solution of nonlinear cable equation with time fractional derivative. At time tkâđ, some second-order đ schemes combined with weighted and shifted GrĂŒnwald difference (WSGD) approximation of fractional derivative are considered to approximate the time direction, and the Galerkin FE method is used to discretize the space direction. The stability of second-order đ schemes is derived and the second-order time convergence rate in L2-norm is proved. Finally, some numerical calculations are implemented to indicate the feasibility and effectiveness for our schemes.
Keywords
Second-order đ scheme Nonlinear fractional cable equation Finite element algorithm Stability Error estimatesÂMathematics Subject Classification (2010)
65M60Â 65N15Â 65N30ÂPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
The authors thank the reviewers and editor very much for their insightful comments for improving our work.
Funding information
This work is supported by the National Natural Science Fund (11661058,11761053,11772046), Australian Research Council (ARC) via the Discovery Project (DP180103858) and Natural Science Fund of Inner Mongolia Autonomous Region (2016MS0102, 2017MS0107).
References
- 1.Zhao, Y., Zhang, Y., Shi, D., Liu, F., Turner, I.: Superconvergence analysis of nonconforming finite element method for two-dimensional time fractional diffusion equations. Appl. Math. Lett. 59, 38â47 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 2.Liu, F., Zhuang, P., Turner, I., Burrage, K., Anh, V.: A new fractional finite volume method for solving the fractional diffusion equation. Appl. Math. Model. 38(15), 3871â3878 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 3.Wang, H., Yang, D., Zhu, S.F.: A Petrov-Galerkin finite element method for variable-coefficient fractional diffusion equations. Comput. Methods Appl. Mech. Eng. 290, 45â56 (2015)MathSciNetCrossRefGoogle Scholar
- 4.Yuste, S.B., Quintana-Murillo, J.: A finite difference method with non-uniform time steps for fractional diffusion equations. Comput. Phys. Comm. 183(12), 2594â2600 (2012)CrossRefzbMATHGoogle Scholar
- 5.Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172(1), 65â77 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Li, J.C., Huang, Y.Q., Lin, Y.P.: Developing finite element methods for Maxwellâs equations in a cole-cole dispersive medium. SIAM J. Sci. Comput. 33, 3153â3174 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Zhang, H., Liu, F., Anh, V.: Galerkin finite element approximation of symmetric space-fractional partial differential equations. Appl. Math. Comput. 217, 2534â2545 (2010)MathSciNetzbMATHGoogle Scholar
- 8.Jiang, Y.J., Ma, J.T.: Moving finite element methods for time fractional partial differential equations. Sci. China Math. 56, 1287â1300 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 9.Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855â875 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 10.Ding, H.F., Li, C.P.: A novel second-order midpoint approximation formula for Riemann-Liouville derivative: algorithm and application. arXiv:1605.02177 (2016)
- 11.Liu, Y., Du, Y.W., Li, H., He, S., Gao, W.: Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem. Comput. Math. Appl. 70(4), 573â591 (2015)MathSciNetCrossRefGoogle Scholar
- 12.Liu, Y., Du, Y.W., Li, H., Li, J.C., He, S.: A two-grid mixed finite element method for a nonlinear fourth-order reaction-diffusion problem with time-fractional derivative. Comput. Math. Appl. 70(10), 2474â2492 (2015)MathSciNetCrossRefGoogle Scholar
- 13.Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algor. 72(3), 749â767 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Jin, B., Lazarov, R., Liu, Y.K., Zhou, Z.: The Galerkin finite element method for a multi-term time-fractional diffusion equation. J. Comput. Phys. 281, 825â843 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Tian, W.Y., Zhou, H., Deng, W.H.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comput. 84, 1703â1727 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 16.Wang, Z.B., Vong, S.W.: Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation. J. Comput. Phys. 277, 1â15 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
- 17.Bu, W.P., Tang, Y.F., Wu, Y.C., Yang, J.Y.: Finite difference/finite element method for two-dimensional space and time fractional Bloch-Torrey equations. J. Comput. Phys. 293, 264â279 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Zeng, F., Li, C., Liu, F., Turner, I.: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 35(6), A2976âA3000 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
- 19.Lin, Y.M., Li, X.J., Xu, C.J.: Finite difference/spectral approximations for the fractional Cable equation. Math. Comput. 80, 1369â1396 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
- 20.Langlands, T.A.M., Henry, B., Wearne, S.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59(6), 761â808 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
- 21.Liu, Y., Du, Y.W., Li, H., Wang, J.F.: A two-grid finite element approximation for a nonlinear time-fractional Cable equation. Nonlinear Dyn. 85, 2535â2548 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 22.Bhrawy, A.H., Zaky, M.A.: Numerical simulation for two-dimensional variable-order fractional nonlinear cable equation. Nonlinear Dyn. 80(1-2), 101â116 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 23.Zhuang, P., Liu, F., Turner, I., Anh, V.: Galerkin finite element method and error analysis for the fractional cable equation. Numer. Algor. 72(2), 447â466 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 24.Liu, J.C., Li, H., Liu, Y.: A new fully discrete finite difference/element approximation for fractional Cable equation. J. Appl. Math. Comput. 52(1-2), 345â361 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 25.Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional Cable equation. J. Sci. Comput. 68(1), 252â272 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 26.Wang, Y.J., Liu, Y., Li, H., Wang, J.F.: Finite element method combined with second-order time discrete scheme for nonlinear fractional Cable equation. Eur. Phys. J. Plus. 131, 61 (2016). Â https://doi.org/10.1140/epjp/i2016-16061-3 CrossRefGoogle Scholar
- 27.Du, Y.W., Liu, Y., Li, H., Fang, Z.C., He, S.: Local discontinuous Galerkin method for a nonlinear time-fractional fourth-order partial differential equation. J. Comput. Phys. 344, 108â126 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
- 28.Sun, H., Sun, Z.Z., Gao, G.H.: Some temporal second order difference schemes for fractional wave equations. Numer. Methods Partial Differential Eq. 32 (3), 970â1001 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
- 29.Alikhanov, A.A.: A new difference scheme for the fractional diffusion equation. J. Comput. Phys. 280, 424â438 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 30.Gao, G.H., Sun, H.W., Sun, Z.Z.: Stability and convergence of finite difference schemes for a class of time-fractional sub-diffusion equations based on certain superconvergence. J. Comput. Phys. 280, 510â528 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 31.Liu, Y., Zhang, M., Li, H., Li, J.C.: High-order local discontinuous Galerkin method combined with WSGD-approximation for a fractional subdiffusion equation. Comput. Math. Appl. 73(6), 1298â1314 (2017)MathSciNetCrossRefGoogle Scholar
- 32.Ji, C.C., Sun, Z.Z.: A high-order compact finite difference scheme for the fractional sub-diffusion equation. J. Sci. Comput. 64(3), 959â985 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
- 33.Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algor. 74(2), 499â525 (2017)CrossRefzbMATHGoogle Scholar