Conditioning of the matrix-matrix exponentiation

Original Paper
  • 25 Downloads

Abstract

If A has no eigenvalues on the closed negative real axis, and B is arbitrary square complex, the matrix-matrix exponentiation is defined as A B := e log(A)B . It arises, for instance, in Von Newmann’s quantum-mechanical entropy, which in turn finds applications in other areas of science and engineering. In this paper, we revisit this function and derive new related results. Particular emphasis is devoted to its Fréchet derivative and conditioning. We propose a new definition of bivariate matrix function and derive some general results on their Fréchet derivatives, which hold, not only to the matrix-matrix exponentiation but also to other known functions, such as means of two matrices, second order Fréchet derivatives and some iteration functions arising in matrix iterative methods. The numerical computation of the Fréchet derivative is discussed and an algorithm for computing the relative condition number of A B is proposed. Some numerical experiments are included.

Keywords

Matrix-matrix exponentiation Bivariate matrix function Conditioning Fréchet derivative Matrix exponential Matrix logarithm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

We would like to thank Prof. N. J. Higham (Editor) and the anonymous reviewers for their helpful suggestions and comments. In particular, the identity (6.4) and the bound for ∥ log(A)∥ after the proof of Theorem 6.1 were suggested by one of the anonymous reviewers. The work of the first author was supported by ISR-University of Coimbra (project UID/EEA/00048/2013) funded by “Fundação para a Ciência e a Tecnologia” (FCT). The work of the corresponding author is supported by Robat Karim branch, Islamic Azad University, Tehran, Iran.

References

  1. 1.
    Abul-Dahab, M.A., Bakhet, A.K.: A certain generalized gamma matrix functions and their properties. J. Ana. Num. Theor. 3(1), 63–68 (2015)Google Scholar
  2. 2.
    Al-Mohy, A.H., Higham, N.J.: Computing the Fréchet derivative of the matrix exponential, with an application to condition number estimation. SIAM J. Matrix Anal. Appl. 30(4), 1639–1657 (2009)CrossRefMATHGoogle Scholar
  3. 3.
    Al-Mohy, A.H., Higham, N.J.: Improved inverse scaling and squaring algorithms for the matrix logarithm. SIAM J. Sci Comput. 34(4), C153–C169 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Al-Mohy, A.H., Higham, N.J., Relton, S.D.: Computing the Fréchet derivative of the matrix logarithm and estimating the condition number. SIAM J. Sci. Comput. 35(4), C394–C410 (2013)CrossRefMATHGoogle Scholar
  5. 5.
    Aprahamian, M., Higham, N.J.: The matrix unwinding function, with an application to computing the matrix exponential. SIAM J. Matrix Anal. Appl. 35 (1), 88–109 (2014)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bhatia, R.: Matrix Analysis. Springer, New York (1997)CrossRefMATHGoogle Scholar
  7. 7.
    Barradas, I., Cohen, J.E.: Iterated exponentiation, matrix-matrix exponentiation, and entropy. J. Math. Anal. Appli. 183, 76–88 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cardoso, J.R., Ralha, R.: Matrix arithmetic-geometric mean and the computation of the logarithm. SIAM J. Matrix Anal. Appl. 37(2), 719–743 (2016)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Dieci, L., Morini, B., Papini, A.: Computational techniques for real logarithms of matrices. SIAM J. Matrix Anal. Appl. 17(3), 570–593 (1996)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Friedberg, S.H., Insel, A.J., Spence, L.E. Linear Algebra: 4th edn. Pearson Education, International Edition, London (2014)Google Scholar
  11. 11.
    Gentleman, R., Vandal, A.C.: Computational algorithms for censored-data problems using intersection graphs. J. Comput. Graph. Stat. 10(3), 403–421 (2001)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F. Matrix Computations: 4th edn. Johns Hopkins Univ. Press, Baltimore (2013)Google Scholar
  13. 13.
    Guo, C. -H., Higham, N.J.: A Schur-Newton method for the matrix pth root and its inverse. SIAM J. Matrix Anal. Appl. 28, 788–804 (2006)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Harris, W.F., Cardoso, J.R.: The exponential-mean-log-transference as a quantitative measure of the optical character of an average eye. Ophthalmic Physiol. Opt. 26, 380–383 (2006)CrossRefGoogle Scholar
  15. 15.
    Higham, N.J.: Stable iterations for the matrix square roots. Numer. Algorithms 15, 227–242 (1997)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Higham, N.J.: Functions of Matrices: Theory and Computation. SIAM, Philadelphia (2008)CrossRefMATHGoogle Scholar
  17. 17.
    Higham, N.J., Lin, L.: A Schur-Padé algorithm for fractional powers of a matrix. SIAM J. Matrix Anal. Appl. 32, 1056–1078 (2011)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Higham, N.J., Lin, L.: An improved Schur-Padé algorithm for fractional powers of a matrix and their Fréchet derivatives. SIAM J. Matrix Anal. Appl. 34, 1341–1360 (2013)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Iannazzo, B.: On the Newton method for the matrix p th root. SIAM J. Matrix Anal. Appl. 28, 503–523 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Iannazzo, B.: The geometric mean of two matrices from a computational viewpoint. Numer. Linear Alg. Appl. 23(2), 208–229 (2016)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Horn, R.A., Johnson, C.R. Matrix Analysis: 2nd edn. Cambridge University Press, Cambridge (2013)Google Scholar
  22. 22.
    Horn, R.A., Johnson, C.R.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1994)MATHGoogle Scholar
  23. 23.
    Jódar, L., Cortés, J.C.: On the hypergeometric matrix function. J. Comput. Appl. Math. 99, 205–217 (1998)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Jódar, L., Cortés, J. C.: Some properties of gamma and beta functions. Appl. Math. Lett. 11(1), 89–93 (1998)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Kenney, C.S., Laub, A.J.: Condition estimates for matrix functions. SIAM J. Matrix Anal. Appl. 10, 191–209 (1989)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Kressner, D.: Bivariate matrix function, Seminar für Angewandte Mathematik, Research Report No. 2010-22, Swiss Federal Institute of Technology Zurich (2010)Google Scholar
  27. 27.
    Mathias, R.: A chain rule for matrix functions and applications. SIAM J. Matrix Anal. Appl. 17(3), 610–620 (1996)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Moler, C.B., Van Loan, C.F.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Najfeld, I., Havel, T.: Derivatives of the matrix exponential and their computation. Adv. Appl. Math. 16, 321–375 (1995)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    Rowland, T., Weisstein, E.W.: Matrix exponential, MathWorld–A Wolfram Web Resource, http://mathworld.wolfram.com/MatrixExponential.html
  31. 31.
    Sastre, J., Ibáñez, J., Defez, E., Ruiz, P.: New scaling-squaring Taylor algorithms for computing the matrix exponential. SIAM J. Sci. Comput. 37, A439–A455 (2015)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    Stickel, E.U.: Fast computation of matrix exponential and logarithm. Analysis 5, 163–173 (1985)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Van Loan, C.: The sensitivity of the matrix exponential. SIAM J. Numer. Anal. 14(6), 971–981 (1977)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Vandal, A.C., Gentleman, R., Liu, X.: Constrained estimation and likelihood intervals for censored data. Can. J. Stat. 33, 71–84 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Polytechnic Institute of Coimbra/ISECCoimbraPortugal
  2. 2.Institute of Systems and RoboticsUniversity of Coimbra, Pólo IICoimbraPortugal
  3. 3.Department of Mathematics, Robat Karim BranchIslamic Azad UniversityTehranIran

Personalised recommendations