Numerical Algorithms

, Volume 79, Issue 1, pp 337–356 | Cite as

Galerkin-Legendre spectral schemes for nonlinear space fractional Schrödinger equation

  • Hui Zhang
  • Xiaoyun JiangEmail author
  • Chu Wang
  • Wenping Fan
Original Paper


In the paper, we first propose a Crank-Nicolson Galerkin-Legendre (CN-GL) spectral scheme for the one-dimensional nonlinear space fractional Schrödinger equation. Convergence with spectral accuracy is proved for the spectral approximation. Further, a Crank-Nicolson ADI Galerkin-Legendre spectral method for the two-dimensional nonlinear space fractional Schrödinger equation is developed. The proposed schemes are shown to be efficient with second-order accuracy in time and spectral accuracy in space which are higher than some recently studied methods. Moreover, some numerical results are demonstrated to justify the theoretical analysis.


Galerkin-Legendre spectral method Crank-Nicolson difference method Nonlinear space fractional Schrödinger equation Convergence analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



We would like to express our gratitude to the editor for taking time to handle the manuscript and to anonymous referees whose constructive comments are very helpful for improving the quality of our paper. This work has been supported by the National Natural Science Foundation of China (Grants Nos. 11472161, 11771254, 11672163), and the Natural Science Foundation of Shandong Province (Grant ZR2015AM011, ZR2017MA030).


  1. 1.
    Ablowitz, M.J., Herbst, B.M.: On homoclinic structure and numerically induced chaos for the nonlinear Schrdinger equation. SIAM J. Appl. Math. 50, 339–351 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Akrivis, G.D., Dougalis, V.A., Karakashian, O.A.: On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation. Numer. Math. 59(1), 31–53 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bertaccini, D., Durastante, F.: Solving mixed classical and fractional partial differential equations. Conference: 9Th Workshop SDS2016 STRUCTURAL DYNAMICAL SYSTEMS: Computational Aspects, At Hotel-Villaggio Porto Giardino, Italy (2016)Google Scholar
  4. 4.
    Chen, S., Liu, F., Anh, V.: A novel implicit finite difference method for the one-dimensional fractional percolation equation. Numer. Algorithms 56, 517–535 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chen, W., Pang, G.F.: A new definition of fractional Laplacian with application to modeling three-dimensional nonlocal heat conduction. J. Comput. Phys. 309, 350–367 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Feng, L.B., Zhuang, P., Liu, F., Turner, I., Gu, Y.T.: Finite element method for space-time fractional diffusion equation. Numer. Algorithms 72, 749–767 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Fibich, G., Papanicolaou, G.: Self-focusing in the perturbed and unperturbed nonlinear schrödinger equation in critical dimension. SIAM J. Appl. Math. 60, 183–240 (1999)CrossRefzbMATHGoogle Scholar
  8. 8.
    Henry, B., Wearne, S.: Existence of turing instabilities in a two-species fractional reaction difiusion system. SIAM J. Appl. Math. 62, 870–887 (2002)CrossRefzbMATHGoogle Scholar
  9. 9.
    Hilfer, R.: Applications of fractional calculus in physics. World Scientific, London (2000)CrossRefzbMATHGoogle Scholar
  10. 10.
    Huang, J.F., Nie, N.N., Tang, Y.F.: A second order finite difference-spectral method for space fractional diffusion equation. Science China Mathematics 136, 521–537 (2013)Google Scholar
  11. 11.
    Jiang, X.Y., Xu, M.Y., Qi, H.T.: The fractional diffusion model with an absorption term and modified ficks law for non-local transport processes. Nonlinear Analysis: Real World Applications 11(1), 262–269 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear schrödinger equation: the discontinuous Galerkin method. Math. Comput. 67(222), 479–499 (1998)CrossRefzbMATHGoogle Scholar
  13. 13.
    Karakashian, O., Makridakis, C.: A space-time finite element method for the nonlinear schrödinger equation: the continuous Galerkin method. SIAM J. Numer. Anal. 36(6), 1779–1807 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and applications of fractional differential equations. Elsevier, Amsterdam (2006)zbMATHGoogle Scholar
  15. 15.
    Lenzi, E.K., de Oliveira, B.F., da Silva, L.R., Evangelista, L.R.: Solutions for a Schrödinger equation with a nonlocal term. J. Math. Phys. 49, 032108 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Li, M., Huang, C.M., Wang, P.D.: Galerkin finite element method for nonlinear fractional Schrödinger equations. Numer. Algorithms 74, 499–525 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liu, W.J., Sun, J.B., Wu, B.Y.: Galerkin-chebyshev spectral method and block boundary value methods for two-dimensional semilinear parabolic equations. Numer. Algorithms 71, 437–455 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Metzler, R., Barkai, E., Klafter, J.: Anomalous diffusion and relaxation close to thermal equilibrium: A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 82, 3563–3567 (1999)CrossRefGoogle Scholar
  19. 19.
    Meerschaert, M.M., Scalas, E.: Coupled continuous time random walks in finance. Phys. A 370, 114–118 (2006)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Pang, G.F., Chen, W., Fu, Z.J.: Space-fractional advection-dispersion equations by the Kansa method. J. Comput. Phys. 293, 280–296 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Pang, G.F., Perdikaris, P., Cai, W., Karniadakis, G.E.: Discovering variable fractional orders of advection-dispersion equations from field data using multi-fidelity Bayesian optimization. J. Comput. Phys. 348, 694–714 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Podlubny, I.: Fractional differential equations: an introduction to fractional derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Mathematics in Science and Engineering, 1st edn, vol. 198. Academic Press, New York (1999)zbMATHGoogle Scholar
  23. 23.
    Ren, R., Li, H., Jiang, W., Song, M.: An efficient Chebyshev-tau method for solving the space fractional diffusion equations. Appl. Math. Comput. 224, 259–267 (2013)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ross, B.: Fractional calculus and its applications. Lecture Notes in Mathematics. Springer, Berlin (1975)CrossRefGoogle Scholar
  25. 25.
    Roop, J.P.: Variational solution of the fractional advection dispersion equation. Ph.D. Theis. Clemson University, South Carolina (2004)Google Scholar
  26. 26.
    Shen, J.: Efficient spectral-Galerkin method I. Direct solvers for second- and fourth-order equations using Legendre polynomials. SIAM J. Sci. Comput. 15, 1489–1505 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Wang, T., Guo, B., Xu, Q.: Fourth-order compact and energy conservative difference schemes for the nonlinear schrödinger equation in two dimensions. J. Comput. Phys. 243, 382–399 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, D., Xiao, A., Yang, W.: Crank-nicolson difference scheme for the coupled nonlinear Schrödinger equations with the Riesz space fractional derivative. J. Comput. Phys. 242, 670–681 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Yang, Q.Q., Turner, I., Liu, F.W., Ilić, M.: Novel numerical methods for solving the time-space fractional diffusion equation in two dimensions. SIAM J. Sci. Comput. 33, 1159–1180 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Ye, H.P., Gao, G.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Yu, B., Jiang, X.Y.: Numerical identification of the fractional derivatives in the two-dimensional fractional cable equation. J. Sci. Comput. 68, 252–272 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: Crank-nicolson ADI spectral method for the two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Zheng, M.L., Liu, F.W., Turner, I., Anh, A.V.: A novel high order space-time spectral method for the time fractional Fokker-Planck equation. SIAM J. Sci. Comput. 37, A701–A724 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Zhao, X., Sun, Z.Z., Hao, Z.P.: A fourth-order compact ADI scheme for two-dimensional nonlinear space fractional schrödinger equation. SIAM J. Sci. Comput. 36, A2865–A2886 (2014)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Hui Zhang
    • 1
  • Xiaoyun Jiang
    • 1
    Email author
  • Chu Wang
    • 2
  • Wenping Fan
    • 3
  1. 1.School of MathematicsShandong UniversityJinanPeople’s Republic of China
  2. 2.Nokia Bell LabsMurray HillUSA
  3. 3.School of ScienceJiangnan UniversityWuxiPeople’s Republic of China

Personalised recommendations