Numerical Algorithms

, Volume 79, Issue 1, pp 311–335 | Cite as

Disguised and new quasi-Newton methods for nonlinear eigenvalue problems

  • E. Jarlebring
  • A. Koskela
  • G. Mele
Open Access
Original Paper


In this paper, we take a quasi-Newton approach to nonlinear eigenvalue problems (NEPs) of the type M(λ)v = 0, where \(M:\mathbb {C}\rightarrow \mathbb {C}^{n\times n}\) is a holomorphic function. We investigate which types of approximations of the Jacobian matrix lead to competitive algorithms, and provide convergence theory. The convergence analysis is based on theory for quasi-Newton methods and Keldysh’s theorem for NEPs. We derive new algorithms and also show that several well-established methods for NEPs can be interpreted as quasi-Newton methods, and thereby, we provide insight to their convergence behavior. In particular, we establish quasi-Newton interpretations of Neumaier’s residual inverse iteration and Ruhe’s method of successive linear problems.


Nonlinear eigenvalue problems Inverse iteration Iterative methods Quasi-Newton methods 



We thank Wim Michiels (KU Leuven) for valuable discussions regarding partial fraction expansions for time-delay systems.


  1. 1.
    Van Beeumen, R., Meerbergen, K., Michiels, W.: A rational Krylov method based on Hermite interpolation for nonlinear eigenvalue problems. SIAM J. Sci. Comput. 35(1), A327–A350 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Betcke, T., Higham, N.J., Mehrmann, V., Schröder, C., Tisseur, F.: NLEVP A collection of nonlinear eigenvalue problems. ACM Trans. Math. Softw. 39(2), 1–28 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Beyn, W.-J.: An integral method for solving nonlinear eigenvalue problems. Linear Algebra Appl. 436(10), 3839–3863 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beyn, W.-J., Effenberger, C., Kressner, D.: Continuation of eigenvalues and invariant pairs for parameterized nonlinear eigenvalue problems. Numer. Math. 119(3), 489–516 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dembo, R.S., Eisenstat, S., Steihaug, T.: Newton inexact methods. SIAM J. Numer. Anal. 19, 400–408 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Deuflhard, P.: Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms, vol. 35. Springer (2011)Google Scholar
  7. 7.
    Effenberger, C.: Robust Solution Methods for Nonlinear Eigenvalue Problems. PhD thesis, EPF Lausanne (2013)zbMATHGoogle Scholar
  8. 8.
    Effenberger, C., Kressner, D.: On the residual inverse iteration for nonlinear eigenvalue problems admitting a Rayleigh functional. Technical report, EPF Lausanne (2014)Google Scholar
  9. 9.
    Eisenstat, S.C., Walker, H.F.: Globally convergent inexact Newton methods. SIAM J. Optim. 4(2), 393–422 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gohberg, I., Rodman, L.: Interpolation and local data for meromorphic matrix and operator functions. Integr. Equ. Oper. Theory 9(1), 60–94 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    González-Lima, M., de Oca, F.N.: A Newton-like method for nonlinear system of equations. Numer. Algor. 52(3), 479 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Homeier, H.H.: A modiffed Newton method for rootfinding with cubic convergence. J. Comput. Appl. Math. 157(1), 227–230 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (2012)CrossRefGoogle Scholar
  14. 14.
    Huang, X., Bai, Z., Su, Y.: Nonlinear rank-one modification of the symmetric eigenvalue problem. J. Comput. Appl Math. 28(2), 218–234 (2010)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Jarlebring, E.: Convergence factors of Newton methods for nonlinear eigenvalue problems. Linear Algebra Appl. 436(10), 3943–3953 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Jarlebring, E., Mele, G., Runborg, O.: The waveguide eigenvalue problem and the tensor infinite Arnoldi method. SIAM J. Sci. Comput. 39, A1062–A1088 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jarlebring, E., Michiels, W.: Analyzing the convergence factor of residual inverse iteration. BIT 51(4), 937–957 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Kou, J.: The improvements of modified Newton’s method. Appl. Math. Comput. 189(1), 602–609 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kressner, D.: A block Newton method for nonlinear eigenvalue problems. Numer. Math. 114(2), 355–372 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lancaster, P.: Lambda-Matrices and Vibrating Systems. In: International Series of Monographs in Pure and Applied Mathematics, vol. 94 (1966)Google Scholar
  21. 21.
    Van Loan, C.h.: On estimating the condition of eigenvalues and eigenvectors. Linear algebra Appl. 88, 715–732 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mehrmann, V., Voss, H.: Nonlinear eigenvalue problems: a challenge for modern eigenvalue methods. GAMM-Mitt. 27, 121–152 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mennicken, R., Möller, M.: Non-self-adjoint Boundary Eigenvalue Problems, vol. 192. Gulf Professional Publishing (2003)Google Scholar
  24. 24.
    Mietański, M.J.: Convergence of an inexact generalized Newton method with a scaled residual control. Comput. Math. Appl. 61(6), 1624–1632 (2011)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Neumaier, A.: Residual inverse iteration for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 22, 914–923 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Osborne, M., Michaelson, S.: The numerical solution of eigenvalue problems in which the eigenvalue parameter appears nonlinearly, with an application to differential equation. Comput. J. 7, 66–71 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Peters, G., Wilkinson, J.: Inverse iterations, ill-conditioned equations and Newton’s method. SIAM Rev. 21, 339–360 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rott, O., Jarlebring, E.: An iterative method for the multipliers of periodic delay-differential equations and the analysis of a PDE milling model. In Proceedings of the 9th IFAC Workshop on Time-delay Systems. Prague, pp 1–6 (2010)Google Scholar
  29. 29.
    Ruhe, A.: Algorithms for the nonlinear eigenvalue problem. SIAM J. Numer. Anal. 10, 674–689 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Schreiber, K.: Nonlinear Eigenvalue Problems: Newton-Type Methods and Nonlinear Rayleigh Functionals. PhD thesis TU, Berlin (2008)Google Scholar
  31. 31.
    Sleijpen, G., Van der Vorst, H.A.: The Jacobi-Davidson method for eigenvalue problems and its relation with accelerated inexact Newton scheme. In: Proceedings of the Second IMACS International Symposium on Iterative Methods in Linear Algebra IMACS (2006)Google Scholar
  32. 32.
    Sleijpen, G.L., Booten, A.G., Fokkema, D.R., van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Solovëv, S.I.: Preconditioned iterative methods for a class of nonlinear eigenvalue problems. Linear algebra Appl. 415(1), 210–229 (2006)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Szyld, D.B., Xue, F.: Local convergence analysis of several inexact newton-type algorithms for general nonlinear eigenvalue problems. Numer. Math. (2012)Google Scholar
  35. 35.
    Szyld, D.B., Xue, F.: Several properties of invariant pairs of nonlinear algebraic eigenvalue problems. IMA J. Numer. Anal. 34(3), 921–954 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Tausch, J., Butler, J.: Floquet multipliers of periodic waveguides via Dirichlet-to-Neumann maps. J. Comput. Phys. 159(1), 90–102 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Unger, G.: Convergence orders of iterative methods for nonlinear eigenvalue problems. In: Advanced Finite Element Methods and Applications. Springer, pp. 217–237 (2013)Google Scholar
  38. 38.
    Unger, H.: Nichtlineare Behandlung von Eigenwertaufgaben. Z. Angew. Math. Mech. 30, 281–282 (1950). English translation: CrossRefzbMATHGoogle Scholar
  39. 39.
    Voss, H.: An Arnoldi method for nonlinear eigenvalue problems. BIT 44, 387–401 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Voss, H.: Nonlinear eigenvalue problems. In: Hogben, L. (ed.) Handbook of Linear Algebra, Second Edition, number 164 in Discrete Mathematics and its Applications. Chapman and Hall/CRC (2013)Google Scholar
  41. 41.
    Voss, H., Werner, B.: A minimax principle for nonlinear eigenvalue problems with applications to nonoverdamped systems. Math. Methods Appl. Sci. 4, 415–424 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Werner, B.: Das Spektrum von Operatorenscharen mit verallgemeinerten Rayleighquotienten. PhD thesis, Fachbereich Mathematik Universitt Hamburg (1970)Google Scholar
  43. 43.
    Xue, F., Szyld, D.B.: Efficient preconditioned inner solves for inexact Rayleigh quotient iteration and their connections to the single-vector jacobi-davidson method. Technical report (2011)Google Scholar
  44. 44.
    Ypma, T.J.: Local convergence of inexact Newton methods. SIAM J. Numer. Anal. 21(3), 583–590 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Zwart, H.J., Curtain, R.F., Partington, J.R., Glover, K.: Partial fraction expansions for delay systems. Syst. Control Lett. 10(4), 235–243 (1988)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2017

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.KTH Royal Institute of TechnologyStockholmSweden

Personalised recommendations