Advertisement

Numerical Algorithms

, Volume 77, Issue 1, pp 111–150 | Cite as

A new approach to improve the order of approximation of the Bernstein operators: theory and applications

  • Hassan Khosravian-Arab
  • Mehdi DehghanEmail author
  • M. R. Eslahchi
Original Paper

Abstract

This paper presents a new approach to improve the order of approximation of the Bernstein operators. Three new operators of the Bernstein-type with the degree of approximations one, two, and three are obtained. Also, some theoretical results concerning the rate of convergence of the new operators are proved. Finally, some applications of the obtained operators such as approximation of functions and some new quadrature rules are introduced and the theoretical results are verified numerically.

Keywords

Linear positive operator The Bernstein operators Bernstein Theorem Korovkin Theorem Voronovkaja Theorem Rate of convergence Degree of convergence 

Mathematics Subject Classification (2010)

41A10 42A20 65D30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgment

The authors would like to thank the anonymous reviewers for their careful reading of the manuscript and their comments which improved the quality of the paper.

References

  1. 1.
    Behroozifar, M., Yousefi, S.A.: Numerical solution of delay differential equations via operational matrices of hybrid of block–pulse functions and Bernstein polynomials. Comput. Methods Differ. Equ. 1(2), 78–95 (2013)zbMATHGoogle Scholar
  2. 2.
    Bernstein, S.N.: Complémenta l’article de E. Voronovskaya Détermination de la forme asymptotique de l’approximation des fonctions par les polynômes de M. Bernstein. CR Acad. Sci. URSS 1932, 86–92 (1932)zbMATHGoogle Scholar
  3. 3.
    Bernstein, S.: Demonstration du theoreme de Weierstrass, fonde sur le probabilities. Commun. Soc. Math. Kharkow 13, 1–2 (1912)Google Scholar
  4. 4.
    Bhrawy, A.H., Doha, E.H., Saker, M.A., Baleanu, D.: Modified Jacobi–Bernstein basis transformation and its application to multi–degree reduction of Bezier curves. J. Comput. Appl. Math. 302, 369–384 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Butzer, P.L.: Linear combinations of Bernstein polynomials. Canad. J. Math 5(2), 559–567 (1953)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Costabile, F., Gualtieri, M.I., Serra, S.: Asymptotic expansion and extrapolation for Bernstein polynomials with applications. BIT Numer. Math. 36(4), 676–687 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Carothers, N.L.: Real Analysis. Cambridge University Press (2000)Google Scholar
  8. 8.
    Doha, E.H., Bhrawy, A.H., Saker, M.A., Messaoudi, S.: On the derivatives of Bernstein polynomials: An application for the solution of high even-order differential equations. BVP-Bound. Value Probl. 2011, 24 (2011)CrossRefzbMATHGoogle Scholar
  9. 9.
    Davis, P.J.: Interpolation and approximation. Courier Corporation (1975)Google Scholar
  10. 10.
    DeVore, R.A., Lorentz, G.G.: Constructive approximation. Springer-Verlag, Berlin (1993)CrossRefzbMATHGoogle Scholar
  11. 11.
    Ditzian, Z., Totik, V.: Moduli of smoothness. Springer, New York (1987)CrossRefzbMATHGoogle Scholar
  12. 12.
    Floater, M.S.: On the convergence of derivatives of Bernstein approximation. J. Approx. Theory 134(1), 130–135 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gupta, V., Agarwal, R.P.: Convergence estimates in approximation theory. Springer, New York (2014)CrossRefzbMATHGoogle Scholar
  14. 14.
    Gupta, V., Ispir, N.: On simultaneous approximation for some modified Bernstein type operators. Int. J. Math. Math. Sci. 2004(71), 3951–3958 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gonska, H., Rasa, I.: Asymptotic behavior of differentiated Bernstein polynomials. Mat. Vesnik 61(1), 53–60 (2009)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gonska, H.: On the degree of approximation in Voronovskaja’s theorem. Stud. Univ. Babeş Bolyai Math. 52(3), 103–115 (2007)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Gavrea, I., Ivan, M.: An answer to a conjecture on Bernstein operators. J. Math. Anal. Appl. 390(1), 86–92 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publications of Corporations, India (1960)Google Scholar
  19. 19.
    Lorentz, G.G.: Bernstein Polynomials. American Mathematical Society (2012)Google Scholar
  20. 20.
    Micchelli, C.A.: Saturation classes and iterates of operators. Ph. D. Thesis, Stanford University (1969)Google Scholar
  21. 21.
    Micchelli, C.A.: The saturation class and iterates of the Bernstein polynomials. J. Approx. Theory 8(1), 1–18 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mamedov, R.G.: On the asymptotic value of the approximation of repeatedly differentiable functions by positive linear operators. Dokl. Akad. Nauk SSSR 146(5), 1013–1016 (1962)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Mazhar, S.M., Totik, V.: Approximation by modified Szász operators. Acta Sci. Math. 49(1-4), 257–269 (1985)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Phillips, G.M.: Interpolation and approximation by polynomials, vol. 14. Springer Science & Business Media (2003)Google Scholar
  25. 25.
    Rivlin, J.T.: An Introduction to the Approximation of Functions. Courier Corporation (2003)Google Scholar
  26. 26.
    Tachev, G.T.: The complete asymptotic expansion for Bernstein operators. J. Math. Anal. Appl. 385(2), 1179–1183 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Voronovskaja, E.: Determination de la forme asyptotique de approximation des fonctions par les polynomes de M. Bernstein, C. R. Acad. Sci. URSS, 79–85 (1932)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Hassan Khosravian-Arab
    • 1
  • Mehdi Dehghan
    • 1
    Email author
  • M. R. Eslahchi
    • 2
  1. 1.Department of Applied Mathematics, Faculty of Mathematics Computer SciencesAmirkabir University of TechnologyTehranIran
  2. 2.Department of Applied Mathematics, Faculty of Mathematical SciencesTarbiat Modares UniversityTehranIran

Personalised recommendations