Numerical Algorithms

, Volume 74, Issue 1, pp 19–37 | Cite as

Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems

Stokes control
  • Owe Axelsson
  • Shiraz Farouq
  • Maya NeytchevaEmail author
Original Paper


The governing dynamics of fluid flow is stated as a system of partial differential equations referred to as the Navier-Stokes system. In industrial and scientific applications, fluid flow control becomes an optimization problem where the governing partial differential equations of the fluid flow are stated as constraints. When discretized, the optimal control of the Navier-Stokes equations leads to large sparse saddle point systems in two levels. In this paper, we consider distributed optimal control for the Stokes system and test the particular case when the arising linear system can be compressed after eliminating the control function. In that case, a system arises in a form which enables the application of an efficient block matrix preconditioner that previously has been applied to solve complex-valued systems in real arithmetic. Under certain conditions, the condition number of the so preconditioned matrix is bounded by 2. The numerical and computational efficiency of the method in terms of number of iterations and execution time is favorably compared with other published methods.


PDE-constrained optimization problems Finite elements Iterative solution methods Preconditioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Axelsson, O., Neytcheva, M., Ahmad, B.: A comparison of iterative methods to solve complex valued linear algebraic systems. Numer. Algorithms 66, 811–841 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Babuska, I., Aziz, A. K.: Survey lectures on the mathematical foundations of the finite element method, pp 1–359. Academic Press, New York (1972)zbMATHGoogle Scholar
  3. 3.
    Cahouet, J., Chabard, J. P.: Some fast 3d finite element solvers for the generalized Stokes problem. Int. J. Numer. Meth. Fl. 8, 869–895 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Elman, H. C., Golub, G. H.: Inexact and preconditioned Uzawa algorithms for saddle point problems. SIAM J. Numer. Anal. 31, 1645–1661 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods, Springer-Verlag (1991)Google Scholar
  6. 6.
    Hiptmair, R.: Operator preconditioning. Comput. Math. Appl. 52, 699–706 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Bangerth, W., Hartmann, R., Kanschat, G.: deal.ii-a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. 33 (2007). doi: 10.1145/1268776.1268779
  8. 8.
    Ahrens, J., Geveci, B., Law, C.: Paraview. Elsevier (2005)Google Scholar
  9. 9.
    Lions, J. -L.: Optimal control of systems governed by partial differential equations. Springer-Verlag, Berlin (1971)CrossRefzbMATHGoogle Scholar
  10. 10.
    Axelsson, O., Farouq, S., Neytcheva, M.: Comparison of preconditioned Krylov subspace iteration methods for PDE-constrained optimization problems. Poisson and convection-diffusion control. Numerical Algorithms. In press. doi: 10.1007/s11075-016-0111-1
  11. 11.
    Pearson, J.W: On the development of parameter-robust preconditioners and commutator arguments for solving Stokes control problems. ETNA 44, 53–72 (2015)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Wathen, A. J., Rees, T.: Chebyshev semi-iteration in preconditioning for problems including the mass matrix. ETNA 34(09), 125–135 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Olshanskii, M. A., Peters, J., Reusken, A.: Uniform preconditioners for a parameter dependent saddle point problem with application to generalized Stokes interface equations. Numer. Math. 105, 159–191 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Saad, Y.: A flexible inner-outer preconditioned GMRES algorithm. SIAM J. Sci. Comput. 14, 461–469 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Paige, C., Saunders, M.: Solution of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Borzí, A., Schulz, V.: Computational Optimization of Systems Governed by Partial Differential Equations, volume 8 of Computational Science and Engineering. Philadelphia (2012)Google Scholar
  17. 17.
    Drǎgǎnescu, A., Soane, A. M.: Multigrid solution of a distributed optimal control problem constrained by the Stokes equations. Appl. Math. Comput. 219, 5622–5634 (2013)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Hinze, M., Pinnau, R., Ulbrich, M, Ulbrich, S.: Optimization with PDE Constraints. Springer-Verlag (2009)Google Scholar
  19. 19.
    Bramble, J. H., Pasciak, J. E., Vassilev, A. T.: Analysis of the inexact Uzawa algorithm for saddle point problems. SIAM J. Numer. Anal. 34, 1072–1092 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Elman, H. C., Silvester, D. J., Wathen, A. J.: Finite elements and fast iterative solvers: with applications in incompressible fluid dynamics. Oxford University Press, New York (2005)zbMATHGoogle Scholar
  21. 21.
    Pearson, J. W., Wathen, A. J.: A new approximation of the Schur complement in preconditioners for PDE-constrained optimization. Numer. Linear Alg. Appl. 19, 816–829 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Rees, T., Wathen, A. J.: Preconditioning iterative methods for the optimal control of the Stokes equations. SIAM J. Sci. Comput. 33, 2903–2926 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Heroux, M. A., Willenbring, J. M.: Trilinos users guide. Technical Report SAND2003-2952, Sandia National Laboratories (2003)Google Scholar
  24. 24.
    Mardal, K. -A., Winther, R.: Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 98, 305–327 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Mardal, K. -A., Winther, R.: Erratum. Uniform preconditioners for the time dependent Stokes problem. Numer. Math. 103, 171–172 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Axelsson, O., Boyanova, P., Kronbichler, M., Neytcheva, M., Wu, X.: Numerical computational efficiency of solvers for two-phase problems. Comput. Math Appl. 65, 301–314 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Zulehner, W.: Nonstandard norms and robust estimates for saddle-point problems. SIAM J Matrix Anal. Appl. 32, 536–560 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Zulehner, W.: Efficient solvers for saddle point problems with applications to PDE-constrained optimization, pp 197–216. Springer (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute of Geonics AS CROstravaCzech Republic
  2. 2.Department of Information TechnologyUppsala UniversityUppsalaSweden

Personalised recommendations