Numerical Algorithms

, Volume 70, Issue 3, pp 653–667 | Cite as

On the maximum relative error when computing integer powers by iterated multiplications in floating-point arithmetic

  • Stef Graillat
  • Vincent Lefèvre
  • Jean-Michel Muller
Original Paper

Abstract

We improve the usual relative error bound for the computation of xn through iterated multiplications by x in binary floating-point arithmetic. The obtained error bound is only slightly better than the usual one, but it is simpler. We also discuss the more general problem of computing the product of n terms.

Keywords

Floating-point arithmetic Rounding error Accurate error bound Exponentiation 

Mathematics Subject Classification (2010)

15-04 65G99 65-04 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Graillat, S.: Accurate floating point product and exponentiation. IEEE Trans. Comput. 58(7), 994–1000 (2009)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Higham, N.J. Accuracy and Stability of Numerical Algorithms, 2nd edn. SIAM, Philadelphia, PA (2002)MATHCrossRefGoogle Scholar
  3. 3.
    IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard 754–2008, August 2008. Available at http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
  4. 4.
    Jeannerod, C.-P., Rump, S.M.: On relative errors of floating-point operations: optimal bounds and applications. Research report hal-00934443, available at http://hal.inria.fr/hal-00934443
  5. 5.
    Jeannerod, C.-P., Rump, S.M.: Improved error bounds for inner products in floating-point arithmetic. SIAM J. Matrix Anal. Appl. 34(2), 338–344 (2013)MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Knuth, D.: The Art of Computer Programming, 3rd edition, volume 2, Seminumerical Algorithms. Addison-Wesley, Reading, MA (1998)Google Scholar
  7. 7.
    Muller, J.-M., Brisebarre, N., De Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser Boston (2010)Google Scholar
  8. 8.
    Rump, S.M.: Error estimation of floating-point summation and dot product. BIT 52(1), 201–220 (2012)MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stef Graillat
    • 1
    • 2
  • Vincent Lefèvre
    • 3
  • Jean-Michel Muller
    • 4
  1. 1.Sorbonne Universités, UPMC Univ Paris 06, UMR 7606, LIP6ParisFrance
  2. 2.CNRS, UMR 7606, LIP6ParisFrance
  3. 3.Inria, Laboratoire LIPUniversité de LyonLyonFrance
  4. 4.CNRS, Laboratoire LIPUniversité de LyonLyonFrance

Personalised recommendations