Numerical Algorithms

, Volume 72, Issue 2, pp 447–466 | Cite as

Galerkin finite element method and error analysis for the fractional cable equation

Original Paper


The cable equation is one of the most fundamental equations for modeling neuronal dynamics. These equations can be derived from the Nernst-Planck equation for electro-diffusion in smooth homogeneous cylinders. Fractional cable equations are introduced to model electrotonic properties of spiny neuronal dendrites. In this paper, a Galerkin finite element method(GFEM) is presented for the numerical simulation of the fractional cable equation(FCE) involving two integro-differential operators. The proposed method is based on a semi-discrete finite difference approximation in time and Galerkin finite element method in space. We prove that the numerical solution converges to the exact solution with order O(τ+hl+1) for the lth-order finite element method. Further, a novel Galerkin finite element approximation for improving the order of convergence is also proposed. Finally, some numerical results are given to demonstrate the theoretical analysis. The results show that the numerical solution obtained by the improved Galerkin finite element approximation converges to the exact solution with order O(τ2+hl+1).


Galerkin finite element approximation Fractional cable equation Semi-discrete finite difference approximation Full discretization Error analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeumer, B., Kovács, M., Meerschaert, M.: Numerical solutions for fractional reaction-diffusion equations. Comput. Math. Appl. 55, 2212–2226 (2008)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bisquert, J.: Fractional diffusion in the multiple-trapping regime and revision of the equivalence with the continuous-time random walk. Phys. Rev. Lett. 91(4), 010602 (2003)CrossRefGoogle Scholar
  3. 3.
    Bernardi, C., Maday, Y.: Approximations Spectrales de Problems aux Limites Elliptiques. Springer, Berlin (1992)Google Scholar
  4. 4.
    Chen, C.-M., Liu, F., Turner, I., Anh, V.: A Fourier method for the fractional diffusion equation describing sub-diffusion. J. Comp. Phys. 227, 886–897 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chen, C.-M., Liu, F., Turner, I., Anh, V.: A new Fourier analysis method for the Galilei invariant fractional advection diffusion equation. ANZIAM J. 48, C605—C619 (2007)MathSciNetGoogle Scholar
  6. 6.
    Cuesta, E., Lubich, C., Palencia, C.: Convolution quadrature time discretization of fractional diffusive-wave equations. Math. Comput. 75, 673C696 (2006)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Deng, W.: Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Num. Anal. 47, 204–226Google Scholar
  8. 8.
    Henry, B.I., Langlands, T.A.M.: Fractional cable models for spiny neuronal dendrites. Phys. Rev. Lett. 100(2008), 128103 (2008)CrossRefGoogle Scholar
  9. 9.
    Langlands, T.T.A.M., Henry, B.I., Wearne, S.L.: Fractional cable equation models for anomalous electrodiffusion in nerve cells: infinite domain solutions. J. Math. Biol. 59, 761–808 (2009)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Langlands, T.A.M., Henry, B.I., Wearne, S.: Solution of a fractional cable equation: Infinite case,
  11. 11.
    Langlands, T.A.M., Henry, B.I., Wearne, S.: Solution of a fractional cable equation: Finite case,
  12. 12.
    Langlands, T.A.M., Henry, B.I.: The accuracy and stability of an implicit solution method for the fractional diffusion equation. J. Comp. Phys. 205, 719–736 (2005)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Li, C., Zhao, Z., Chen, Y.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855–875 (2011)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comp. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    McLean, William, Mustapha, Kassem: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equaiton. Numer. Algor. 52, 69–88 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Lin, Y., Li, X., Xu, C.: Finite difference/spectral approximations for the fractional cable equation. Math. Comput. 80, 1369–1396 (2011)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck equation. J. Comp. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Liu, F., Anh, V., Turner, I., Zhuang, P.: Numerical solution for the solute transport in fractal porous media. ANZIAM J. 45(E), 461–473 (2004)MathSciNetMATHGoogle Scholar
  19. 19.
    Liu, Q., Liu, F., Turner, I., Anh, V.: Approximation of the Lévy-Feller advection-dispersion process by random walk and finite difference method. J. Comp. Phys. 222, 57–70 (2007)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Liu, F., Yang, C., Burrage, K.: Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term. J. Comp. Appl. Math. 231, 160–176 (2009)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Metzler, R., Compte, A.: Generalized diffusion-advection schemes and dipersive sedimentation: a fractional approach. J. Phys. Chem. B 104, 3858–3865 (2000)CrossRefGoogle Scholar
  22. 22.
    Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comp. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Meerschart, M.M., Scalas, E.: Coupled continuous time random walks in finance. Physica A 70, 114–118 (2006)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Rall, W.: Branching dendritic trees and motoneuron membrane resistivity. Exp. Neurol. 1, 491–527 (1959)CrossRefGoogle Scholar
  25. 25.
    Rall, W.: Core conductor theory and cable properties of neurons. In: Kandel, E., Geiger, S. (eds.) Handbook of Physiology. American Physiological Society, Washington (1977)Google Scholar
  26. 26.
    Rall, W.: Cable theory for dendritic neurons. In: Koch, C., Segev, I. (eds.) Methods in Neuronal Modeling. MIT Press, Cambridge (1989)Google Scholar
  27. 27.
    Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equation on bounded domains in R 2. J. Comp. Appl. Math. 193, 243–268 (2006)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach (1993)Google Scholar
  29. 29.
    Santamaria, F., Wils, S., De Schutter, E., Augustine, G.J.: Anomalous diffusion in Purkinje cell dendrites caused by spines. Neuron 52, 635–648 (2006)CrossRefGoogle Scholar
  30. 30.
    Thomée, V.: Galerkin Finite Element Methods for Parabolic Problems. Springer, Berlin (2006)MATHGoogle Scholar
  31. 31.
    Yuste, S.B., Acedo, L., Lindenberg, K.: Reaction front in an \(A+B\rightarrow C\) reaction-subdiffusion process. Phys. Rev. E 69, 036126 (2004)CrossRefGoogle Scholar
  32. 32.
    Yuste, S.B., Acedo, L.: An explicit finite difference method and a new Von Neumann-type stability analysis for fractional diffusion equations. SIAM J. Num. Anal. 42, 1862–1874 (2005)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zheng, Y., Li, C., Zhao, Z.: A note on the finite element method for the space-fractional advection diffusion equation. Comput. Math. Appl. 59, 1718–1726 (2010)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    Zhuang, P., Liu, F., Anh, V., Turner, I.: New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation. SIAM J. Num. Anal. 46, 1079–1095 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mathematical SciencesXiamen UniversityXiamenChina
  2. 2.School of Mathematical SciencesQueensland University of TechnologyBrisbaneAustralia
  3. 3.Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific ComputationXiamen UniversityXiamenChina

Personalised recommendations