Numerical Algorithms

, Volume 72, Issue 2, pp 393–407

# An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation

Original Paper

## Abstract

Distributed-order differential equations have recently been investigated for complex dynamical systems, which have been used to describe some important physical phenomena. In this paper, a new time distributed-order and two-sided space-fractional advection-dispersion equation is considered. Firstly, we transform the time distributed-order fractional equation into a multi-term time-space fractional partial differential equation by applying numerical integration. Then an implicit numerical method is constructed to solve the multi-term fractional equation. The uniqueness, stability and convergence of the implicit numerical method are proved. Some numerical results are presented to demonstrate the effectiveness of the method. The method and techniques can be extended to other time distributed-order and space-fractional partial differential equations.

### Keywords

Implicit numerical method Distributed-order fractional derivative Two-sided space-fractional derivative Stability and convergence Advection-dispersion equation

## Preview

### References

1. 1.
Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water. Resour. Res. 28(12), 3293–3307 (1992)
2. 2.
Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation, II. Application of Laplace and Fourier transforms. Proc. R. Soc., A 465, 1893–1917 (2009)
3. 3.
Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order nonlinear reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)
4. 4.
Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the distributed order time-fractional diffusion equation, IEEE Explore Conference Proceedings, ICFDA’14 International Conference on Fractional Differentiation and Its Applications, Catania, Italy (2014)Google Scholar
5. 5.
Rebelo, M., Morgado, M.L.: Numerical solution of the reaction-wave-diffusion equation with distributed order in time, Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Cadiz, Spain, July, 3-7 , (2014) Vol IV 1057-1068. ISBN: 978-84-616-9216-3Google Scholar
6. 6.
Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96–104 (2009)
7. 7.
Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.U.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, 743–773 (2005)
8. 8.
Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
9. 9.
Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)
10. 10.
Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)
11. 11.
Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.: Fundamental solutions for the multi-term modified power law wave equations in a finite domain, Electronic. J. Math. Anal. Appl. 1(1), 55–66 (2013)Google Scholar
12. 12.
Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012)Google Scholar
13. 13.
Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)
14. 14.
Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comp. Appl. Math. 166, 209–219 (2004)
15. 15.
Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 91, 12–20 (2007)
16. 16.
Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)
17. 17.
Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time fractional wave equations. Fractional Calc. Appl. Anal. 16(1), 9–25 (2013)
18. 18.
Lorenz, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)
19. 19.
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)
20. 20.
Meerschaert, M.M., Naneb, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)
21. 21.
Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)
22. 22.
Podlubny, I.: Fractional differential equaitions. Acdemic Press, New York (1999)
23. 23.
Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 371, 20120153 (2013)
24. 24.
Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004)Google Scholar
25. 25.
Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)
26. 26.
Ye, H., Liu, F., Turner, I., Anh, V., Burrage, K.: Series expansion solutions for the multi-term time and space fractional partial differential equations in two and three dimensions. Eur. Phys. J., Spec. Top. 222, 1901–1914 (2013)
27. 27.
Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Res. 32, 561–581 (2009)
28. 28.
Zhao, X., Sun, Z.-Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)
29. 29.
Zhang, X.X., Mouchao L.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water. Resour. Res. 43, W07437 (2007)Google Scholar