Numerical Algorithms

, Volume 72, Issue 2, pp 393–407 | Cite as

An implicit numerical method of a new time distributed-order and two-sided space-fractional advection-dispersion equation

Original Paper


Distributed-order differential equations have recently been investigated for complex dynamical systems, which have been used to describe some important physical phenomena. In this paper, a new time distributed-order and two-sided space-fractional advection-dispersion equation is considered. Firstly, we transform the time distributed-order fractional equation into a multi-term time-space fractional partial differential equation by applying numerical integration. Then an implicit numerical method is constructed to solve the multi-term fractional equation. The uniqueness, stability and convergence of the implicit numerical method are proved. Some numerical results are presented to demonstrate the effectiveness of the method. The method and techniques can be extended to other time distributed-order and space-fractional partial differential equations.


Implicit numerical method Distributed-order fractional derivative Two-sided space-fractional derivative Stability and convergence Advection-dispersion equation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adams, E.E., Gelhar, L.W.: Field study of dispersion in a heterogeneous aquifer: 2. Spatial moment analysis, Water. Resour. Res. 28(12), 3293–3307 (1992)CrossRefGoogle Scholar
  2. 2.
    Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed order diffusion-wave equation, II. Application of Laplace and Fourier transforms. Proc. R. Soc., A 465, 1893–1917 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order nonlinear reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Ford, N.J., Morgado, M.L., Rebelo, M.: A numerical method for the distributed order time-fractional diffusion equation, IEEE Explore Conference Proceedings, ICFDA’14 International Conference on Fractional Differentiation and Its Applications, Catania, Italy (2014)Google Scholar
  5. 5.
    Rebelo, M., Morgado, M.L.: Numerical solution of the reaction-wave-diffusion equation with distributed order in time, Proceedings of the 14th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE 2014, Cadiz, Spain, July, 3-7 , (2014) Vol IV 1057-1068. ISBN: 978-84-616-9216-3Google Scholar
  6. 6.
    Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comp. Appl. Math. 225(1), 96–104 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Diethelm, K., Ford, N.J., Freed, A.D., Luchko, Y.U.: Algorithms for the fractional calculus: A selection of numerical methods. Comput. Methods Appl. Mech. Engrg. 194, 743–773 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Sun, Z.Z., Wu, X.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Jiang, H., Liu, F., Turner, I., Burrage, K.: Analytical solutions for the multi-term time-space Caputo-Riesz fractional advection-diffusion equations on a finite domain. J. Math. Anal. Appl. 389(2), 1117–1127 (2012)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Gorenflo, R., Luchko, Y., Stojanović, M.: Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density. Fract. Calc. Appl. Anal. 16, 297–316 (2013)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Jiang, H., Liu, F., Meerschaert, M.M., McGough, R.: Fundamental solutions for the multi-term modified power law wave equations in a finite domain, Electronic. J. Math. Anal. Appl. 1(1), 55–66 (2013)Google Scholar
  12. 12.
    Jiao, Z., Chen, Y., Podlubny, I.: Distributed-Order Dynamic Systems: Stability, Simulation, Applications and Perspectives. Springer (2012)Google Scholar
  13. 13.
    Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker-Planck Equation. J. Comp. Appl. Math. 166, 209–219 (2004)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 91, 12–20 (2007)MathSciNetMATHGoogle Scholar
  16. 16.
    Liu, F., Zhuang, P., Burrage, K.: Numerical methods and analysis for a class of fractional advection-dispersion models. Comput. Math. Appl. 64, 2990–3007 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Liu, F., Meerschaert, M.M., McGough, R.J., Zhuang, P., Liu, Q.: Numerical methods for solving the multi-term time fractional wave equations. Fractional Calc. Appl. Anal. 16(1), 9–25 (2013)MathSciNetMATHGoogle Scholar
  18. 18.
    Lorenz, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29, 57–98 (2002)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Meerschaert, M.M., Naneb, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)MathSciNetCrossRefMATHGoogle Scholar
  21. 21.
    Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Podlubny, I.: Fractional differential equaitions. Acdemic Press, New York (1999)MATHGoogle Scholar
  23. 23.
    Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Phil. Trans. R. Soc. A: Math., Phys. Eng. Sci. 371, 20120153 (2013)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Sokolov, I.M., Chechkin, A.V., Klafter, J.: Distributed-order fractional kinetics. Acta Physica Polonica 35, 1323–1341 (2004)Google Scholar
  25. 25.
    Sun, Z.Z., Wu, X.N.: A fully discrete difference scheme for a diffusion-wave system. Appl. Numer. Math. 56, 193–209 (2006)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Ye, H., Liu, F., Turner, I., Anh, V., Burrage, K.: Series expansion solutions for the multi-term time and space fractional partial differential equations in two and three dimensions. Eur. Phys. J., Spec. Top. 222, 1901–1914 (2013)CrossRefGoogle Scholar
  27. 27.
    Zhang, Y., Benson, D.A., Reeves, D.M.: Time and space nonlocalities underlying fractional-derivative models: Distinction and literature review of field applications. Adv. Water Res. 32, 561–581 (2009)CrossRefGoogle Scholar
  28. 28.
    Zhao, X., Sun, Z.-Z.: A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 230, 6061–6074 (2011)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhang, X.X., Mouchao L.: Persistence of anomalous dispersion in uniform porous media demonstrated by pore-scale simulations. Water. Resour. Res. 43, W07437 (2007)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Mathematics and StatisticsJiangsu Normal UniversityXuzhouChina
  2. 2.School of Mathematical SciencesQueensland University of TechnologyQldAustralia

Personalised recommendations