Advertisement

Numerical Algorithms

, Volume 71, Issue 4, pp 811–826 | Cite as

Improved convergence analysis for Newton-like methods

Original Paper

Abstract

We present a new semilocal convergence analysis for Newton-like methods in order to approximate a locally unique solution of an equation in a Banach space setting. This way, we expand the applicability of these methods in cases not covered in earlier studies. The advantages of our approach include a more precise convergence analysis under the same computational cost on the Lipschitz constants involved. Applications are also given in this study to show that our estimates on the distances involved are tighter than the older ones.

Keywords

Secant-type method Banach space Majorizing sequence Divided difference Local convergence Semilocal convergence 

Mathematics Subject Classification (2010)

65H10 65G99 65B05 65N30 47J25 47J05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amat, S., Busquier, S., Negra, M.: Adaptive approximation of nonlinear operators. Numer. Funct. Anal. Optim. 25, 397–405 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, vol. 15. Elsevier, New York (2007)Google Scholar
  3. 3.
    Argyros, I.K., Hilout, S.: Weaker conditions for the convergence of Newton’s method. J. Complexity, AMS 28, 364–387 (2012)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Argyros, I.K., Cho, Y.J., Hilout, S.: Numerical Method for Equations and its Applications. CRC Press/Taylor and Francis, New York (2012)MATHGoogle Scholar
  5. 5.
    Bosarge, W.E., Falb, P.L.: A multipoint method of third order. J. Optimiz. Th. Appl. 4, 156–166 (1969)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bosarge, W.E., Falb, P.L.: Infinite dimensional multipoint methods and the solution of two point boundary value problems. Numer. Math. 14, 264–286 (1970)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Catinas, E: The inexact, inexact perturbed, and quasi-Newton methods are equivalent models. Math. Comp. 74(249), 291–301 (2005)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Catinas, E: On some iterative methods for solving nonlinear equations. ANTA 23(1), 47–53 (1994)MathSciNetMATHGoogle Scholar
  9. 9.
    Chandrasekhar, S.: Radiative Transfer. Dover, New York (1960)MATHGoogle Scholar
  10. 10.
    Dennis, J.E.: Toward a unified convergence theory for Newton-like methods. In: Rall, L.B. (ed.) Nonlinear Functional Analysis and Applications, pp 425–472. Academic Press, New York (1971)Google Scholar
  11. 11.
    Ezquerro, J.A., Hernández, Rubio, M.J.: Secant-like methods for solving nonlinear integral equations of the Hammerstein type. J. Comput. Appl. Math. 115, 245–254 (2000)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Ezquerro, J.A., Gutiérrez, J.M., Hernández, M.A., Romero, N., Rubio, M.J.: The Newton method: From Newton to Kantorovich. (Spanish). Gac. R. Soc. Mat. Esp. 13(1), 53–76 (2010)MathSciNetMATHGoogle Scholar
  13. 13.
    Gragg, W.B., Tapia, R.A.: Optimal error bounds for the Newton-Kantorovich theorem. SIAM J. Numer. Anal. 11, 10–13 (1974)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kantorovich, L.V., Akilov, G.P.: Functional Analysis. Pergamon Press, Oxford (1982)MATHGoogle Scholar
  15. 15.
    Kornstaedt, H.J.: Ein allgemeiner Konvergenzstaz für verschärfte Newton- Verfahrem, ISNM 28, Birkhaüser Verlag, Basel and Stuttgart, pp. 53–69 (1975)Google Scholar
  16. 16.
    Laasonen, P.: Ein überquadratich konvergenter iterativer Algorithmus. Ann. Acad. Sci. Fenn. Ser. I 450, 1–10 (1969)MathSciNetMATHGoogle Scholar
  17. 17.
    Miel, G.J.: The Kantorovich theorem with optimal error bounds. Amer. Math. Monthly 86, 212–215 (1979)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Miel, G.J.: An updated version of the Kantorovich theorem for Newton’s method. Computing 27, 237–244 (1981)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Ortega, L.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic press, New York (1970)MATHGoogle Scholar
  20. 20.
    Potra, F.A.: Sharp error bounds for a class of Newton-like methods. Libertas Math. 5, 71–84 (1985)MathSciNetMATHGoogle Scholar
  21. 21.
    Potra, F.A., Pták, V.: Nondiscrete induction and iterative processes. Research Notes in Mathematics, vol. 103. Pitman (Advanced Publishing Program), Boston (1984)MATHGoogle Scholar
  22. 22.
    Potra, F.A: On a modified secant method. Revue Anal. Numer. Theor. Approx. 8, 203–214 (1979)MathSciNetMATHGoogle Scholar
  23. 23.
    Potra, F.A: On the convergence of a class of Newton-like methods. Iterative solution of nonlinear systems of equations (Oberwolfach, 1982), Lecture Notes in Math, vol. 953, pp 125–137. Springer, Berlin-New York (1982)Google Scholar
  24. 24.
    Potra, F.A.: An application of the induction method of V. Ptak to the study of Regula Falsi. Aplikace Matematiky 26, 111–120 (1981)MathSciNetMATHGoogle Scholar
  25. 25.
    Potra, F.A: On the a posteriori error estimates for Newton’s method. Beiträge Zur Numer. Math. 12, 125–138 (1984)MathSciNetMATHGoogle Scholar
  26. 26.
    Proinov, P.D.: New general convergence theory for iterative processes and its applications to Newton-Kantorovich type theorems. J. Complexity 26, 3–42 (2010)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Traub, J.F.: Iterative Method for Solutions of Equations. Prentice-Hall, New Jersey (1964)MATHGoogle Scholar
  28. 28.
    Rheinboldt, W.C.: An adaptive continuation process for solving systems of nonlinear equations. Polish Academy of Science, Banach Ctr. Publ. 3, 129–142 (1977)MathSciNetGoogle Scholar
  29. 29.
    Schmidt, J.W.: Untere Fehlerschranken fun Regula-Falsi Verhafren. Period Hungar. 9, 241–247 (1978)CrossRefMATHGoogle Scholar
  30. 30.
    Yamamoto, T.: A convergence theorem for Newton-like methods in Banach spaces. Numer. Math. 51, 545–557 (1987)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ángel Alberto Magreñán
    • 1
  • Ioannis K. Argyros
    • 2
  1. 1.Escuela de IngenieríaUniversidad Internacional de La RiojaLogroñoSpain
  2. 2.Department of Mathematics SciencesCameron UniversityLawtonUSA

Personalised recommendations