Advertisement

Numerical Algorithms

, Volume 71, Issue 4, pp 775–796 | Cite as

An optimal fourth-order family of methods for multiple roots and its dynamics

  • Ramandeep Behl
  • Alicia Cordero
  • Sandile S. Motsa
  • Juan R. TorregrosaEmail author
  • Vinay Kanwar
Original Paper

Abstract

There are few optimal fourth-order methods for solving nonlinear equations when the multiplicity m of the required root is known in advance. Therefore, the principle focus of this paper is on developing a new fourth-order optimal family of iterative methods. From the computational point of view, the conjugacy maps and the strange fixed points of some iterative methods are discussed, their basins of attractions are also given to show their dynamical behavior around the multiple roots. Further, using Mathematica with its high precision compatibility, a variety of concrete numerical experiments and relevant results are extensively treated to confirm the theoretical development.

Keywords

Nonlinear equations Multiple roots Chebyshev’s method Schröder method Basin of attraction Complex dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchard, P.: Complex analytic dynamics on the Riemann sphere. Bull. AMS 11(1), 85–141 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Blanchard, P.: The dynamics of Newton’s method. Proc. Symp. Appl. Math. 49, 139–154 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chicharro, F., Cordero, A., Torregrosa, J.R.: Drawing dynamical and parameter planes of iterative families and methods. Sci. World J. 2013 (2013). Article ID 780153Google Scholar
  4. 4.
    Devaney, R.L.: The mandelbrot set, the farey tree and the fibonacci sequence. Amer. Math. Monthly 106(4), 289–302 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Kung, H.T., Traub, J.F.: Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 21, 643–651 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Li, S.G., Cheng, L.Z., Neta, B.: Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 59, 126–135 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Li, S., Liao, X., Cheng, L.: A new fourth-order iterative method for finding multiple roots of nonlinear equations. Appl. Math. Comput. 215, 1288–1292 (2009)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Neta, B., Scott, M., Chun, C.: Basins attractors for various methods for multiple roots. Appl. Math. Comput. 218, 5043–5066 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Petkovic, M.S., Neta, B., Petkovic, L.D., Dzunic, J.: Multipoint methods for solving nonlinear equations. Academic Press (2013)Google Scholar
  10. 10.
    Sharma, J.R., Sharma, R.: Modified Jarratt method for computing multiple roots. Appl. Math. Comput. 217, 878–881 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Schröder, E.: Über unendlichviele Algorithm zur Auffosung der Gleichungen. Math. Annal. 2, 317–365 (1870)CrossRefGoogle Scholar
  12. 12.
    Scott, M., Neta, B., Chun, C.: Basins attractors for various methods. Appl. Math. Comput. 218, 2584–2599 (2011)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Sharifi, M., Babajee, D.K.R., Soleymani, F.: Finding the solution of nonlinear equations by a class of optimal methods. Comput. Math. Appl. 63, 764–774 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Traub, J.F.: Iterative Methods for the solution of equations. Prentice-Hall, Englewood Cliffs (1964)zbMATHGoogle Scholar
  15. 15.
    Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–93 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Zhou, X., Chen, X., Song, Y.: Constructing higher-order methods for obtaining the muliplte roots of nonlinear equations. J. Comput. Math. Appl. 235, 4199–4206 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ramandeep Behl
    • 1
  • Alicia Cordero
    • 2
  • Sandile S. Motsa
    • 1
  • Juan R. Torregrosa
    • 2
    Email author
  • Vinay Kanwar
    • 3
  1. 1.School of Mathematics, Statistics and Computer ScienceUniversity of KwaZulu-NatalPietermaritzburgSouth Africa
  2. 2.Instituto de Matemática MultidisciplinarUniversitat Politècnica de ValènciaValenciaSpain
  3. 3.University Institute of Engineering and TechnologyPanjab UniversityChandigarhIndia

Personalised recommendations