Numerical Algorithms

, Volume 71, Issue 3, pp 673–697 | Cite as

Easy implementation of advanced tomography algorithms using the ASTRA toolbox with Spot operators

  • Folkert Bleichrodt
  • Tristan van Leeuwen
  • Willem Jan Palenstijn
  • Wim van Aarle
  • Jan Sijbers
  • K. Joost Batenburg
Original Paper

Abstract

Mathematical scripting languages are commonly used to develop new tomographic reconstruction algorithms. For large experimental datasets, high performance parallel (GPU) implementations are essential, requiring a re-implementation of the algorithm using a language that is closer to the computing hardware. In this paper, we introduce a new MATLAB interface to the ASTRA toolbox, a high performance toolbox for building tomographic reconstruction algorithms. By exposing the ASTRA linear tomography operators through a standard MATLAB matrix syntax, existing and new reconstruction algorithms implemented in MATLAB can now be applied directly to large experimental datasets. This is achieved by using the Spot toolbox, which wraps external code for linear operations into MATLAB objects that can be used as matrices. We provide a series of examples that demonstrate how this Spot operator can be used in combination with existing algorithms implemented in MATLAB and how it can be used for rapid development of new algorithms, resulting in direct applicability to large-scale experimental datasets.

Keywords

Linear operators Reconstruction algorithms Software Tomography 

Mathematics Subject Classification (2010)

65F10 65F22 65F50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    ASTRA - Tomographic Reconstruction toolbox. http://sourceforge.net/p/astra-toolbox/. [Online; accessed 1-March-2015] (2015)
  2. 2.
    Agulleiro, J.I., Fernandez, J.J.: Fast tomographic reconstruction on multicore computers. Bioinformatics 27(4), 582–583 (2011)CrossRefGoogle Scholar
  3. 3.
    Andersen, A.H., Kak, A.C.: Simultaneous algebraic reconstruction technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)CrossRefGoogle Scholar
  4. 4.
    Batenburg, K.J., Sijbers, J.: DART: A practical reconstruction algorithm for discrete tomography. IEEE Trans. Image Process 20(9), 2542–2553 (2011)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM. J. Imaging Sci. 2(1), 183–202 (2009)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    van den Berg, E., Friedlander, M.P.: Probing the Pareto frontier for basis pursuit solutions. SIAM J. Sci. Comput. 31(2), 890–912 (2008)CrossRefMathSciNetMATHGoogle Scholar
  7. 7.
    van den Berg, E., Friedlander, M.P.: Spot - a linear-operator toolbox., http://www.cs.ubc.ca/labs/scl/spot/ (2014). [Online; accessed 1-July-2014]
  8. 8.
    Björck, Å., Elfving, T.: Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations. BIT 19(2), 145–163 (1979)CrossRefMathSciNetMATHGoogle Scholar
  9. 9.
    Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. J. Math. Imaging Vision 40(1), 120–145 (2011)CrossRefMathSciNetMATHGoogle Scholar
  10. 10.
    Chilingaryan, S., Mirone, A., Hammersley, A., Ferrero, C., Helfen, L., Kopmann, A., dos Santos Rolo, T., Vagovic, P.: A GPU-based architecture for real-time data assessment at synchrotron experiments. IEEE Trans. Nucl. Sci. 58(4), 1447–1455 (2011)CrossRefGoogle Scholar
  11. 11.
    De Man, B., Basu, S.: Distance-driven projection and backprojection in three dimensions. Phys. Med. Biol. 49(11), 2463–2475 (2004)CrossRefGoogle Scholar
  12. 12.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. B Methodol., 1–38 (1977)Google Scholar
  13. 13.
    Donoghue, P.C.J., Bengtson, S., Dong, X., Gostling, N.J., Huldtgren, T., Cunningham, J.A., Yin, C., Yue, Z., Peng, F., Stampanoni, M.: Synchrotron X-ray tomographic microscopy of fossil embryos. Nature 442(7103), 680–683 (2006)CrossRefGoogle Scholar
  14. 14.
    Figueiredo, M.A.T., Nowak, R.D., Wright, S.J.: Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems. IEEE J. Sel. Topics Signal Process 1(4), 586–597 (2007)CrossRefGoogle Scholar
  15. 15.
    Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theoret. Biol. 36(1), 105–117 (1972)CrossRefGoogle Scholar
  16. 16.
    Goldstein, T., Osher, S.: The split Bregman method for L1-regularized problems. SIAM J. Imaging Sci. 2(2), 323–343 (2009)CrossRefMathSciNetMATHGoogle Scholar
  17. 17.
    Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and X-ray photography. J. Theoret. Biol. 29(3), 471–481 (1970)CrossRefGoogle Scholar
  18. 18.
    Gregor, J., Benson, T.: Computational analysis and improvement of SIRT. IEEE Trans. Med. Imag. 27(7), 918–924 (2008)CrossRefGoogle Scholar
  19. 19.
    Guedouar, R., Zarrad, B.: A comparative study between matched and mis-matched projection/back projection pairs used with ASIRT reconstruction method. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment 619(1), 225–229 (2010)CrossRefGoogle Scholar
  20. 20.
    Guedouar, R., Zarrad, B.: A new reprojection method based on a comparison of popular reprojection models. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers. Detectors and Associated Equipment 619 (1), 270–275 (2010)CrossRefGoogle Scholar
  21. 21.
    Hu, Q., Ley, M.T., Davis, J., Hanan, J.C., Frazier, R., Zhang, Y.: 3D chemical segmentation of fly ash particles with X-ray computed tomography and electron probe microanalysis. Fuel 116, 229–236 (2014)CrossRefGoogle Scholar
  22. 22.
    Jang, B., Kaeli, D., Do, S., Pien, H.: Multi GPU implementation of iterative tomographic reconstruction algorithms. In: Biomedical Imaging: From Nano to Macro, 2009. ISBI’09. IEEE International Symposium on, pp. 185–188. IEEE (2009)Google Scholar
  23. 23.
    Joseph, P.: An improved algorithm for reprojecting rays through pixel images. IEEE Trans. Med. Imag. 1(3), 192–196 (1982)CrossRefGoogle Scholar
  24. 24.
    Kremer, J.R., Mastronarde, D.N., McIntosh, J.R.: Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 116(1), 71–76 (1996)CrossRefGoogle Scholar
  25. 25.
    Kübel, C., Voigt, A., Schoenmakers, R., Otten, M., Su, D., Lee, T., Carlsson, A., Bradley, J.: Recent advances in electron tomography: TEM and HAADF-STEM tomography for materials science and semiconductor applications. Microsc. Microanal. 11(5), 378–400 (2005)CrossRefGoogle Scholar
  26. 26.
    Lewitt, R.M.: Alternatives to voxels for image representation in iterative reconstruction algorithms. Phys. Med. Biol. 37(3), 705–716 (1992)CrossRefGoogle Scholar
  27. 27.
    Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J. Struct. Biol. 176(2), 250–253 (2011)CrossRefGoogle Scholar
  28. 28.
    Palenstijn, W.J., Batenburg, K.J., Sijbers, J.: The ASTRA tomography toolbox. In: 13th International Conference on Computational and Mathematical Methods in Science and Engineering, CMMSE (2013)Google Scholar
  29. 29.
    Pedemonte, S., Bousse, A., Erlandsson, K., Modat, M., Arridge, S., Hutton, B.F., Ourselin, S.: GPU accelerated rotation-based emission tomography reconstruction. In: Nuclear Science Symposium Conference Record (NSS/MIC), pp. 2657–2661. IEEE (2010)Google Scholar
  30. 30.
    Rivers, M.L.: tomoRecon: High-speed tomography reconstruction on workstations using multi-threading. In: Proc. SPIE 8506, Developments in X-Ray Tomography VII, p. 85060U (2012)Google Scholar
  31. 31.
    Schüle, T., Schnörr, C., Weber, S., Hornegger, J.: Discrete tomography by convex–concave regularization and D.C. programming. Discret. Appl. Math. 151 (1), 229–243 (2005)CrossRefMATHGoogle Scholar
  32. 32.
    Siddon, R.L.: Fast calculation of the exact radiological path for a three-dimensional CT array. Med. Phys. 12(2), 252–255 (1985)CrossRefGoogle Scholar
  33. 33.
    Sidky, E.Y., Jørgensen, J.H., Pan, X.: Convex optimization problem prototyping for image reconstruction in computed tomography with the Chambolle–Pock algorithm. Phys. Med. Biol 57(10), 3065–3091 (2012)CrossRefGoogle Scholar
  34. 34.
    Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777–4807 (2008)CrossRefGoogle Scholar
  35. 35.
    Slaney, M., Kak, A.: Principles of computerized tomographic imaging. Society for Industrial and Applied Mathematics (1988)Google Scholar
  36. 36.
    Thielemans, K., Tsoumpas, C., Mustafovic, S., Beisel, T., Aguiar, P., Dikaios, N., Jacobson, M.W.: STIR: software for tomographic image reconstruction release 2. Phys. Med. Biol. 57(4), 867–883 (2012)CrossRefGoogle Scholar
  37. 37.
    Zeng, G.L., Gullberg, G.T.: Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans. Med. Imaging 19(5), 548–555 (2000)CrossRefGoogle Scholar
  38. 38.
    Zhu, J., Li, X., Ye, Y., Wang, G.: Analysis on the strip-based projectionmodel for discrete tomography. Discrete Applied Mathematics 156(12), 2359–2367 (2008)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Folkert Bleichrodt
    • 1
  • Tristan van Leeuwen
    • 1
  • Willem Jan Palenstijn
    • 1
    • 2
  • Wim van Aarle
    • 2
  • Jan Sijbers
    • 2
  • K. Joost Batenburg
    • 1
    • 2
    • 3
  1. 1.Centrum Wiskunde & InformaticaAmsterdamThe Netherlands
  2. 2.iMinds - Vision LabUniversity of AntwerpAntwerpBelgium
  3. 3.Mathematisch InstituutLeiden UniversityLeidenThe Netherlands

Personalised recommendations