Skip to main content

Asymptotic error of cubic B-spline interpolation using prefiltering

Abstract

A popular class of reconstruction filters that are used in signal and image processing is based on cubic B-splines. One reason for their popularity is the fact that they can be efficiently implemented. This is specifically true with modern GPUs where cubic B-spline filtering can be implemented by means of linearly interpolating texture fetches so that the actual number of memory accesses can be significantly reduced. The curve obtained from filtering with the cubic B-spline does in general not interpolate the original data set. The latter can however be achieved by applying a prefiltering step that transforms the original data set. We study the asymptotic behavior of the reconstruction error of the cubic B-spline interpolation filter using a state of the art method that is based on a Taylor series expansion and that was carefully adjusted to accommodate the infinite support of this reconstruction filter.

References

  1. 1.

    Catmull, E., Rom, R.: A class of local interpolating splines. Computer Aided Geometric Design. Academic Press, pp. 317–326 (1974)

  2. 2.

    Champagnat, F., Le Sant, Y.: Efficient cubic b-spline image interpolation on a GPU. J. Graph. Tools 16(4), 218–232 (2012)

    Article  Google Scholar 

  3. 3.

    Etiene, T., Jonsson, D., Ropinski, T., Scheidegger, C., Comba, J., Nonato, L., Kirby, R., Ynnerman, A., Silva, C.: Verifying volume rendering using discretization error analysis. IEEE Trans. Vis. Comput. Graph. 20(1), 140–154 (2013)

    Article  Google Scholar 

  4. 4.

    Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoustics Speech Signal Process. 29(6), 1153–1160 (1981)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Lu, W., Vaswani, N.: Exact reconstruction conditions and error bounds for regularized Modified Basis Pursuit (Reg-modified-BP). In: 2010 Conference Record of the Forty Fourth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), pp. 763–767. IEEE (2010)

  6. 6.

    Machiraju, R., Yagel, R.: Reconstruction error characterization and control: A sampling theory approach. IEEE Trans. Vis. Comput. Graph 2(4), 364–378 (1996)

    Article  Google Scholar 

  7. 7.

    Marschner, S.R., Lobb, R.: An evaluation of reconstruction filters for volume rendering. In: Bergeron, R.D., Kaufman, A.E. (eds.) IEEE Visualization, pp. 100–107. IEEE Computer Society (1994)

  8. 8.

    Mitchell, D.P., Netravali, A.N.: Reconstruction filters in computer-graphics. SIGGRAPH Comput. Graph 22(4), 221–228 (1988)

    Article  Google Scholar 

  9. 9.

    Möller, T., Machiraju, R., Mueller, K., Yagel, R.: Evaluation and design of filters using a taylor series expansion. IEEE Trans. Vis. Comput. Graph. 3(2), 184–199 (1997)

    Article  Google Scholar 

  10. 10.

    Möller, T., Mueller, K., Kurzion, Y., Machiraju, R., Yagel, R.: Design of accurate and smooth filters for function and derivative reconstruction. In: Proceedings of the 1998 IEEE Symposium on Volume Visualization, VVS ’98, pp. 143–151. ACM, New York (1998)

  11. 11.

    Nehab, D., Maximo, A., Lima, R.S., Hoppe, H.: GPU-efficient recursive filtering and summed-area tables. ACM Trans. Graph. (Proc. ACM SIGGRAPH Asia 2011) 30(6), 176 (2011)

    MATH  Google Scholar 

  12. 12.

    Ruijters, D., ter Haar Romeny, B.M., Suetens, P.: Efficient gpu-based texture interpolation using uniform b-splines. J. Graph. Tools 13(4), 61–69 (2008)

    Article  Google Scholar 

  13. 13.

    Ruijters, D., Thévenaz, P.: Gpu prefilter for accurate cubic b-spline interpolation. Comput. J. 55(1), 15–20 (2012)

    Article  Google Scholar 

  14. 14.

    Sigg, C., Hadwiger, M.: Fast third-order texture filtering. In: Pharr, M. (ed.) GPU Gems 2, pp. 313–329. Addison-Wesley (2005)

  15. 15.

    Unser, M.: Splines: A perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999). IEEE Signal Processing Society’s 2000 magazine award

    Article  MATH  Google Scholar 

  16. 16.

    Unser, M., Aldroubi, A., Eden, M.: Fast b-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13(3), 277–285 (1991)

    Article  Google Scholar 

  17. 17.

    Unser, M., Aldroubi, A., Eden, M., Fellow, L.: B-spline signal processing: Part I-theory. IEEE Trans. Signal Process. 41, 821–833 (1993)

    Article  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Stefan Zellmann.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Percan, Y., Zellmann, S. & Lang, U. Asymptotic error of cubic B-spline interpolation using prefiltering. Numer Algor 70, 191–203 (2015). https://doi.org/10.1007/s11075-014-9941-x

Download citation

Keywords

  • Splines
  • Reconstruction
  • Asymptotic error