Numerical Algorithms

, Volume 69, Issue 3, pp 523–530 | Cite as

Some new periodic Golay pairs

  • Dragomir Ž. Ðoković
  • Ilias S. Kotsireas
Original Paper


Periodic Golay pairs are a generalization of ordinary Golay pairs. They can be used to construct Hadamard matrices. A positive integer v is a (periodic) Golay number if there exists a (periodic) Golay pair of length v. Taking into the account the results obtained in this note and yet unpublished new result (Ðoković and Kotsireas, in preparation), there are only seven known periodic Golay numbers which are definitely not Golay numbers, namely 34,50,58,68,72,74,82. We construct here periodic Golay pairs of lengths 74,122,164,202,226. It is apparently unknown whether 122,164,202,226 are Golay numbers. The smallest length for which the existence of periodic Golay pairs is undecided is now 90.


Periodic Golay pairs Hadamard matrices 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arasu, K.T., Xiang, Q.: On the existence of periodic complementary binary sequences. Des. Codes Cryptogr. 2(3), 257–262 (1992)zbMATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    Borwein, P.B., Ferguson, R.A.: A complete description of Golay pairs for lengths up to 100. Math. Comput. 73(246), 967–985 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Ðoković, D.Ž.: Note on periodic complementary sets of binary sequences. Des. Codes Cryptogr. 13, 251–256 (1998)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Ðoković, D.Ž.: Cyclic (v;r,s;λ) difference families with two base blocks and v ≤ 50. Ann. Comb. 15 (2), 233–254 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ðoković, D.Ž., Kotsireas, I.S.: New results on D-optimal Matrices. J. Combin. Designs. 20, 278–289 (2012)CrossRefGoogle Scholar
  6. 6.
    Ðoković, D.Ž., Kotsireas, I.S.: Compression of periodic complementary sequences and applications. Des. Codes Cryptogr. first published online: 24 July 2013.  10.1007/s10623-013-9862-z
  7. 7.
    Ðoković, D.Ž., Kotsireas, I.S.: Some new periodic Golay pairs. arXiv:[math.CO] (2013)
  8. 8.
    Ðoković, D.Ž., Kotsireas, I.S., Recoskie, D., Sawada, J.: Charm bracelets and their application to the construction of periodic Golay pairs. arXiv:[math.CO]
  9. 9.
    Ðoković, D.Ž., Kotsireas, I.S.: Periodic Golay pairs of length 72 (in preparation)Google Scholar
  10. 10.
    Georgiou, S.D., Stylianou, S., Drosou, K., Koukouvinos, C.: Construction of orthogonal and nearly orthogonal designs for computer experiments. Biometrika, 1–7 (2014)Google Scholar
  11. 11.
    Koukouvinos, C., Seberry, J.: New weighing matrices and orthogonal designs constructed using two sequences with zero autocorrelation function – a review. Journal of Statistical Planning and Inference. 81, 153–182 (1999)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Eliahou, S., Kervaire, M., Saffari, B.: A new restriction on the lengths of Golay complementary sequences. J. Combin. Theory A. 55, 49–59 (1990)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Kotsireas, I.S., Koukouvinos, C.: Periodic complementary binary sequences of length 50. Int. J. Appl. Math. 21, 509–514 (2008)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Seberry, J., Yamada, M.: Hadamard Matrices, Sequences, and Block Designs. In contemporary design theory, Wiley-Intersci. Ser. Discrete Math. Optim., pp 431–560. Wiley, New York (1992)Google Scholar
  15. 15.
    Vollrath, A.: A modification of periodic Golay sequence pairs. Indiana University REU, Summer 2008. Available online:

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Pure Mathematics and Institute for Quantum ComputingUniversity of WaterlooWaterlooCanada
  2. 2.Department of Physics & Computer ScienceWilfrid Laurier UniversityWaterlooCanada

Personalised recommendations