Numerical Algorithms

, Volume 69, Issue 3, pp 473–494 | Cite as

A block MINRES algorithm based on the band Lanczos method

  • Kirk M. SoodhalterEmail author
Original Paper


We develop a block minimum residual (MINRES) algorithm for symmetric indefinite matrices. This version is built upon the band Lanczos method that generates one basis vector of the block Krylov subspace per iteration rather than a whole block as in the block Lanczos process. However, we modify the method such that the most expensive operations are still performed in a block fashion. The benefit of using the band Lanczos method is that one can detect breakdowns from scalar values arising in the computation, allowing for a handling of breakdown which is straightforward to implement. We derive a progressive formulation of the MINRES method based on the band Lanczos process and give some implementation details. Specifically, a simple reordering of the steps allows us to perform many of the operations at the block level in order to take advantage of communication efficiencies offered by the block Lanczos process. This is an important concern in the context of next-generation super computing applications. We also present a technique allowing us to maintain the block size by replacing dependent Lanczos vectors with pregenerated random vectors whose orthogonality against all Lanczos vectors is maintained. Numerical results illustrate the performance on some sample problems. We present experiments that show how the relationship between right-hand sides can affect the performance of the method.


Symmetric matrices Block methods Krylov subspace methods Minimum residual methods Band Lanczos High-performance computing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aliaga, J.I., Boley, D.L., Freund, R.W., Hernández, V: A Lanczos-type method for multiple starting vectors. Math. Comput. 69, 1577–1602 (2000)zbMATHCrossRefGoogle Scholar
  2. 2.
    Baglama, J.: Dealing with linear dependence during the iterations of the restarted block Lanczos methods. Numer. Algorithm 25, 23–36 (2000)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baker, A.H., Dennis, J.M., Jessup, E.R.: On improving linear solver performance: a block variant of GMRES. SIAM J. Sci. Comput. 27, 1608–1626 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Birk, S., Frommer, A.: A deflated conjugategate gradient method for multiple right-hand sides and multiple shifts. (In preparation)Google Scholar
  5. 5.
    Dongarra, J.J., van der Sten, A.J.: High-performance computing systems: status and outlook. Acta Numerica 21, 379–474 (2012)zbMATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    Dubrulle, A.A.: Retooling the method of block conjugate gradients. Electron. Trans. Numer. Anal. 12, 216–233 (2001). (electronic)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Freund, R. W.: Computation of matrix Padé approximations of transfer functions via a Lanczos-type process, in Approximation Theory VIII, Vol. 1: Approximation and Interpolation. In: Charles K. Chui, Larry L. Schumaker (eds.) , pp 215–222. World Scientific Publishing Co., River Edge, NJ (1995)Google Scholar
  8. 8.
    Freund, R.W., Malhotra, M.: A block QMR algorithm for non-Hermitian linear systems with multiple right-hand sides. In: Proceedings of the Fifth Conference of the International Linear Algebra Society (Atlanta, GA, 1995), vol. 254, 1997, pp. 119–157Google Scholar
  9. 9.
    Freund, R.W., Nachtigal, N.M.: QMR: a quasi-minimal residual method for non-Hermitian linear systems. Numer. Math. 60, 315–339 (1991)zbMATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Greenbaum, A.: Iterative Methods for Solving Linear Systems. SIAM, Philadelphia (1997)zbMATHCrossRefGoogle Scholar
  11. 11.
    Gutknecht, M.H., Schmelzer, T.: Updating the QR decomposition of block tridiagonal and block Hessenberg matrices. Appl. Numer. Math. 58, 871–883 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    Gutknecht, M.H., Schmelzer, T.: The block grade of a block Krylov space. Linear Algebra Appl. 430, 174–185 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    Hoemmen, M.: Communication-avoiding krylov subspace methods. PhD thesis, University of California Berkeley (2010)Google Scholar
  14. 14.
    Langou, J.: Iterative methods for solving linear systems with multiple right-hand sides. PhD thesis, CERFACS, France (2003)Google Scholar
  15. 15.
    Loher, D.: Reliable nonsymmetric block Lanczos algorithms, PhD thesis, Diss. no. 16337. ETH Zurich, Zurich, Switzerland (2006)Google Scholar
  16. 16.
    O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)zbMATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Paige, C.C., Saunders, M.A.: Solutions of sparse indefinite systems of linear equations. SIAM J. Numer. Anal. 12, 617–629 (1975)zbMATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    Parks, M.L., Soodhalter, K.M., Szyld, D.B.: Block krylov subspace recycling. (In Preparation)Google Scholar
  19. 19.
    Robbé, M., Sadkane, M.: Exact and inexact breakdowns in the block GMRES method. Linear Algebra Appl. 419, 265–285 (2006)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Ruhe, A.: Implementation aspects of band Lanczos algorithms for computation of eigenvalues of large sparse symmetric matrices. Math. Comput. 33, 680–687 (1979)zbMATHMathSciNetCrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Iterative methods for sparse linear systems, 2nd ed. SIAM, Philadelphia (2003)Google Scholar
  22. 22.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Schmelzer, T.: Block Krylov methods for Hermitian linear systems. Master’s thesis (2004)Google Scholar
  24. 24.
    Simoncini, V., Gallopoulos, E.: Convergence properties of block GMRES and matrix polynomials. Linear Algebra Appl. 247, 97–119 (1996)zbMATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    Simoncini, V., Szyld, D.B.: Recent computational developments in Krylov subspace methods for linear systems. Numer. Linear Algebra Appl. 14, 1–59 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Soodhalter, K.M.: A block MINRES algorithm based on the band lanczos method, Tech. Report. arXiv:1301.2102v2 (2013)
  27. 27.
    Vital, B.: Etude de quelques méthodes de résolution de problèmes linéaires de grande taille sur multiprocesseur. PhD thesis, Université de Rennes (1990)Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Industrial Mathematics InstituteJohannes Kepler UniversityLinzAustria

Personalised recommendations