Numerical Algorithms

, Volume 68, Issue 1, pp 107–119 | Cite as

Matrix polynomial and epsilon-type extrapolation methods with applications

  • K. Jbilou
  • H. Sadok
Original Paper


In the present paper we introduce new matrix extrapolation methods as generalizations of well known methods such as polynomial vector extrapolation methods or 𝜖-type algorithms. We give expressions of the obtained approximations via the Schur complement, the Kronecker product and also by using a new matrix product. We apply these methods to linearly generated sequences especially those arising in control or in ill-posed problems.


Matrix extrapolation Projection Sequence transformation Ill-posed 

Mathematics Subject Classifications (2010)

MSC 65F MSC 15A 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. J. Comput. Appl. Math. 236, 2078–2089 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Theory and Practice. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  4. 4.
    Brezinski, C.: Généralisation de la transformation de Shanks, de la table de la Table de Padé et l’epsilon-algorithm. Calcolo 12, 317–360 (1975)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brezinski, C., Redivo Zaglia, M.: Vector and matrix sequence transformations based on biorthogonality. Appl. Numer. Math. 21, 353–373 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brezinski, C.: Other manifestations of the Schur complement. Lin. Alg. Appl. 111, 231–247 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Brezinski, C., Redivo-Zaglia, M., A Schur complement approach to a general extrapolation algorithm. Lin. Alg. Appl. 279-301, 368 (2003)Google Scholar
  8. 8.
    Brezinski, C., Redivo-Zaglia, M.: The simplified topological epsilon-algorithms for accelerating sequences in a vector space.
  9. 9.
    Brezinski, C.: Block descent methods and hybrid procedures for linear systems. Numer. Algo. 29, 21–32 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P. C. C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp 387–396. Academic Press, New-York (1979)CrossRefGoogle Scholar
  12. 12.
    Hansen, P. C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algo. 46, 189–194 (2007)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for multiple right-hand sides. Appl. Num. Math. 31, 49–63 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Jbilou, K., Messaoudi, A., Tabaa, K.: Some Schur complement identities to matrix extrapolation methods. Lin. Alg. Appl. 392, 195–210 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Mes̀ina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Meth. Appl. Mech. Eng. 10 (2), 165–173 (1977)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 1870–295 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations, U.S.S.R. Comput. Math. and Math. Phys. 17, 199–207 (1978)CrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Iterative methods for sparse linear systems. PWS Press, New York (1995)Google Scholar
  22. 22.
    Shanks, D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)zbMATHMathSciNetGoogle Scholar
  23. 23.
    Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Smith, R.: Matrix equation A + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)CrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Zhang, F.-Z.: The Schur Complement and its applications. Springer, New York (2005)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire LMPAUniversité du Littoral Côte d’OpaleCalaisFrance

Personalised recommendations