Numerical Algorithms

, Volume 68, Issue 1, pp 107–119 | Cite as

Matrix polynomial and epsilon-type extrapolation methods with applications

Original Paper

Abstract

In the present paper we introduce new matrix extrapolation methods as generalizations of well known methods such as polynomial vector extrapolation methods or 𝜖-type algorithms. We give expressions of the obtained approximations via the Schur complement, the Kronecker product and also by using a new matrix product. We apply these methods to linearly generated sequences especially those arising in control or in ill-posed problems.

Keywords

Matrix extrapolation Projection Sequence transformation Ill-posed 

Mathematics Subject Classifications (2010)

MSC 65F MSC 15A 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bouhamidi, A., Jbilou, K., Reichel, L., Sadok, H.: An extrapolated TSVD method for linear discrete ill-posed problems with Kronecker structure. J. Comput. Appl. Math. 236, 2078–2089 (2012)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196, 498–511 (2006)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods. Theory and Practice. North-Holland, Amsterdam (1991)MATHGoogle Scholar
  4. 4.
    Brezinski, C.: Généralisation de la transformation de Shanks, de la table de la Table de Padé et l’epsilon-algorithm. Calcolo 12, 317–360 (1975)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Brezinski, C., Redivo Zaglia, M.: Vector and matrix sequence transformations based on biorthogonality. Appl. Numer. Math. 21, 353–373 (1996)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Brezinski, C.: Other manifestations of the Schur complement. Lin. Alg. Appl. 111, 231–247 (1988)CrossRefMATHMathSciNetGoogle Scholar
  7. 7.
    Brezinski, C., Redivo-Zaglia, M., A Schur complement approach to a general extrapolation algorithm. Lin. Alg. Appl. 279-301, 368 (2003)Google Scholar
  8. 8.
    Brezinski, C., Redivo-Zaglia, M.: The simplified topological epsilon-algorithms for accelerating sequences in a vector space. http://arxiv.org/abs/1402.2473
  9. 9.
    Brezinski, C.: Block descent methods and hybrid procedures for linear systems. Numer. Algo. 29, 21–32 (2002)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P. C. C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp 387–396. Academic Press, New-York (1979)CrossRefGoogle Scholar
  12. 12.
    Hansen, P. C.: Regularization tools version 4.0 for MATLAB 7.3. Numer. Algo. 46, 189–194 (2007)CrossRefMATHGoogle Scholar
  13. 13.
    Jbilou, K., Sadok, H.: Vector extrapolation methods. Application and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    Jbilou, K., Messaoudi, A., Sadok, H.: Global FOM and GMRES algorithms for multiple right-hand sides. Appl. Num. Math. 31, 49–63 (1999)CrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    Jbilou, K., Messaoudi, A., Tabaa, K.: Some Schur complement identities to matrix extrapolation methods. Lin. Alg. Appl. 392, 195–210 (2004)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Mes̀ina, M.: Convergence acceleration for the iterative solution of x=Ax+f. Comput. Meth. Appl. Mech. Eng. 10 (2), 165–173 (1977)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Ouellette, D.V.: Schur complements and statistics. Lin. Alg. Appl. 36, 1870–295 (1981)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations, U.S.S.R. Comput. Math. and Math. Phys. 17, 199–207 (1978)CrossRefGoogle Scholar
  21. 21.
    Saad, Y.: Iterative methods for sparse linear systems. PWS Press, New York (1995)Google Scholar
  22. 22.
    Shanks, D.: Nonlinear transformations of divergent and slowly convergent sequences. J. Math. Phys. 34, 1–42 (1955)MATHMathSciNetGoogle Scholar
  23. 23.
    Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)CrossRefMATHMathSciNetGoogle Scholar
  25. 25.
    Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Smith, R.: Matrix equation A + BX = C. SIAM J. Appl. Math. 16, 198–201 (1968)CrossRefMATHMathSciNetGoogle Scholar
  27. 27.
    Wynn, P.: Acceleration technique for iterated vector and matrix problems. Math. Comp. 16, 301–322 (1962)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Zhang, F.-Z.: The Schur Complement and its applications. Springer, New York (2005)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Laboratoire LMPAUniversité du Littoral Côte d’OpaleCalaisFrance

Personalised recommendations