Numerical Algorithms

, Volume 68, Issue 1, pp 81–93

Numerical solution of stochastic fractional differential equations

ORIGINAL PAPER

Abstract

Nowadays, fractional calculus is used to model various different phenomena in nature. The aim of this paper is to investigate the numerical solution of stochastic fractional differential equations (SFDEs) driven by additive noise. By applying Galerkin method that is based on orthogonal polynomials which here we have used Jacobi polynomials, we prove the convergence of the method. Numerical examples confirm the efficiency of the method.

Keywords

Stochastic fractional differential equations Galerkin approximation Convergence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allen, E.J., Novosel, S.J., Zhang, Z.: Finite element and difference approximation of some linear stochastic partial differential equations. Stochast. Stochast. Rep. 64(1–2), 117–142 (1998)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Atanackovic, T.M., Stankovic, B.: On a system of differential equations with fractional derivatives arising in rod theory. J. Phys. A 37(4), 1241–1250 (2004)CrossRefMATHMathSciNetGoogle Scholar
  3. 3.
    Badr, A.A., El-Hoety, H.S.: Monte-Carlo Galerkin Approximation of Fractional Stochastic Integro-Differential Equation, Hindawi publishing coporation, mathematical problems in engineering, doi:10.1155/2012/709106
  4. 4.
    Blömker, D., Jentzen, A.: Galerkin approximations for the stochastic burgers equation. SIAM J. Numer. Anal. 51-1, 694–715 (2013)CrossRefGoogle Scholar
  5. 5.
    Blömker, D., Kamrani, M., Hosseini, S.M.: Full discretization of Stochastic Burgers Equation with correlated noise. IMA J. Numer. Anal. 33(3), 825–848 (2013)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. Appl. 229–248 (2002)Google Scholar
  7. 7.
    Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 3–22 (2002)Google Scholar
  8. 8.
    Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional Adams method. Numer. Algorithm. 31–52 (2004)Google Scholar
  9. 9.
    Doha, E.H., Bahrawy, A.H., Ezz-Eldien, S.S.: A new Jacobi operational matrix: an application for solving fractional differential equations. Appl. Math. Model. 36(10), 4931–4943 (2012)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Enelund, M., Josefson, B.L.: Time-domain finite element analysis of viscoelastic structures with fractional derivatives constitutive relations. AIAA J. 35(10), 1630–1637 (1997)CrossRefMATHGoogle Scholar
  11. 11.
    Erturka, E.V., Momanib, S.: On the generalized differential transform method: application to fractional integro-differential equations. Stud. Nonlinear Sci. 118–126 (2010)Google Scholar
  12. 12.
    Friedrich, C.: Linear viscoelastic behavior of branched polybutadiens: a fractional calculus approach. Acta Polym. 385–390 (1995)Google Scholar
  13. 13.
    Govindan, T.E., Joshi, M.C.: Stability and optimal control of stochastic functional-differential equations with memory. Numer. Funct. Anal. Optim. 13(3–4), 249–265 (1992)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Gyöngy, I.: Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise II. Potential Anal. 11, 1–37 (1999)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Hashim, I., Abdulaziz, O., Momani, S.: Homotopy analysis method for fractional IVPs. Commun. Nonlinear Sci. Numer. Simul. 14, 674–684 (2009)CrossRefMATHMathSciNetGoogle Scholar
  16. 16.
    He, J.H.: Variation iteration method-a kind of non-linear analytical technique: some examples. Int. J. Non-Linear Mech. 34, 699–708 (1999)CrossRefMATHGoogle Scholar
  17. 17.
    Inc, M.: The approximate and exact solutions of the space-and time-fractional Burgers equations with initial conditions by VIM. J. Math. Anal. Appl. 345, 476–484 (2008)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Jentzen, A.: Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 31, 375–404 (2009)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Jentzen, A., Kloeden, P., Winkel, G.: Efficient simulation of nonlinear parabolic spdes with additive noise. Ann. Appl. Probab. 21(3), 908–950 (2011)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Khader, M.M.: Introducing an efficient modification of the variational iteration method by using Chebyshev polynomials. Appl. Appl. Math: Int. J. 7(1), 283–299 (2012)MATHMathSciNetGoogle Scholar
  21. 21.
    Khader, M.M., El Danaf, T.S., Hendy, A.S.: A computational matrix method for solving systems of high order fractional differential equations. Appl. Math. Model. 4035–4050 (2013)Google Scholar
  22. 22.
    Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, vol. 204 of North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)Google Scholar
  23. 23.
    Odibat, Z., Momani, S., Xu, H.: A reliable algorithm of homotopy analysis method for solving nonlinear fractional differential equations. Appl. Math. Model. 34, 593–600 (2010)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Oksendal, B.: Stochastic Differential Equations, An Introduction with Applications, Springer; 6th edn.Google Scholar
  25. 25.
    Pedas, A., Tamme, E.: On the convergence of spline collocation methods for solving fractional differential equations. J. Comput. Appl. Math. 235, 3502–3514 (2011)CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Sweilam, N.H., Khader, M.M., Mahdy, A.MS.: Crank-Nicolson finite difference method for solving time-fractional diffusion equation. J. Fract. Calc. Appl. 2(2), 1–9 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Mathematics, Faculty of SciencesRazi UniversityKermanshahIran

Personalised recommendations