Advertisement

Numerical Algorithms

, Volume 67, Issue 4, pp 807–826 | Cite as

L 1 C 1 polynomial spline approximation algorithms for large data sets

  • Laurent Gajny
  • Olivier GibaruEmail author
  • Eric Nyiri
Original Paper

Abstract

In this article, we address the problem of approximating data points by C 1-smooth polynomial spline curves or surfaces using L 1-norm. The use of this norm helps to preserve the data shape and it reduces extraneous oscillations. In our approach, we introduce a new functional which enables to control directly the distance between the data points and the resulting spline solution. The computational complexity of the minimization algorithm is nonlinear. A local minimization method using sliding windows allows to compute approximation splines within a linear complexity. This strategy seems to be more robust than a global method when applied on large data sets. When the data are noisy, we iteratively apply this method to globally smooth the solution while preserving the data shape. This method is applied to image denoising.

Keywords

L1 spline Approximation Smooth spline Noisy data 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Auquiert, P., Gibaru, O., Nyiri, E.: C 1 and C 2-continuous polynomial parametric lp splines (p ≥ 1). Comput. Aided Geom. Des. 24(7), 373–394 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Auquiert, P., Gibaru, O., Nyiri, E.: On the cubic L 1 spline interpolant to the heaviside function. Numer. Algoritm. 46(4), 321–332 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Auquiert, P.: Interpolation de points par des splines L 1 régulières. PhD thesis, Université de Valenciennes et du Hainaut-Cambrésis (2007)Google Scholar
  4. 4.
    Bozzini, M., Lenarduzzi, L.: Recovering functions: a method based on domain decomposition. Math. Comput. Simul. (2013). http://www.sciencedirect.com/science/article/pii/S0378475413000670
  5. 5.
    Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput. 216(1), 317–331 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Brézis, H., Ciarlet, P.G., Lions, J.-L.: Analyse fonctionnelle : théorie et applications. Mathématiques appliquées pour la maîtrise. Dunod, ParisGoogle Scholar
  7. 7.
    Castaño, D., Kunoth, A.: Multilevel regularization of wavelet based fitting of scattered data some experiments. Numer. Algoritm. 39(1–3), 81–96 (2005)CrossRefzbMATHGoogle Scholar
  8. 8.
    Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM J. Appl. Math 65(5), 1817–1837 (2005)Google Scholar
  9. 9.
    Cheng, H., Fang, S.-C., Lavery, J.E.: Univariate cubic L 1 splines a geometric programming approach. Math. Meth. Oper. Res. 56(2), 197–229 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cheng, H., Fang, S.-C., Lavery, J.E.: An efficient algorithm for generating univariate cubic L 1 splines. Comput. Optim. Appl. 29(2), 219–253 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Chiu, N.-C., Fang, S.-C., Lavery, J.E., Lin, J.-Y., Wang, Y.: Approximating term structure of interest rates using cubic L 1 splines. Eur. J. Oper. Res. 184(3), 990–1004 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Davydov, O., Sestini, A., Morandi, R.: Local RBF approximation for scattered data fitting with bivariate splines. In: Mache, D.H., Szabados, J., Bruin, M.G. (eds.) Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol. 151, pp. 91–102. Birkhuser Basel (2005)Google Scholar
  13. 13.
    De Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences. Springer, New York (2001)Google Scholar
  14. 14.
    Dobrev, V., Guermond, J.-L., Popov, B.: Surface reconstruction and image enhancement via L 1-minimization. SIAM J. Sci. Comput. 32(3), 1591–1616 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Hoschek, J., Lasser, D., Schumaker, L.L.: Fundamentals of Computer-Aided Geometric Design. Wellesley, Mass. A.K. Peters (1993)Google Scholar
  16. 16.
    Lavery, J.E.: Shape-preserving, multiscale fitting of univariate data by cubic L 1 smoothing splines. Comput. Aided Geom. Des. 17(7), 715–727 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Lavery, J.E.: Univariate cubic L p splines and shape-preserving, multiscale interpolation by univariate cubic L 1 splines. Comput. Aided Geom. Des. 17(4), 319–336 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Lavery, J.E.: Shape-preserving, multiscale interpolation by bi- and multivariate cubic L 1 splines. Comput. Aided Geom. Des. 18(4), 321–343 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Lavery, J.E.: Shape-preserving approximation of multiscale univariate data by cubic L 1 spline fits. Comput. Aided Geom. Des. 21(1), 43–64 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Nyiri, É., Gibaru, O, Auquiert, P.: Fast \(L_{1}^kC^{k}\) polynomial spline interpolation algorithm with shape-preserving properties. Comput. Aided Geom. Des. 28(1), 65–74 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Nyiri, É., Gibaru, O., Auquiert, P.: Nonlinear L 1 C 1 interpolation: application to images. In: Proceedings of the 7th International Conference on Curves and Surfaces, pp. 515–526. Springer, Berlin (2012)Google Scholar
  22. 22.
    Piegl, L.A., Wayne, T.: The NURBS book. Monographs in visual communications. NURBS: Non-Uniform Rational B-Splines. Springer, Berlin (1997)Google Scholar
  23. 23.
    Vanderbei, R.J.: Affine-scaling for linear programs with free variables. Math. Program. 43(1–3), 31–44 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Zheng, W., Bo, P., Liu, Y., Wang, W.: Fast B-spline curve fitting by L-BFGS. Comput. Aided Geom. Des. 29(7), 448–462 (2012). Geometric Modeling and Processing 2012CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Arts et Métiers ParisTechLSIS - UMR CNRS 7296Lille CedexFrance
  2. 2.Arts et Métiers ParisTechLSIS - UMR CNRS 7296Villeneuve d’AscqFrance

Personalised recommendations