L 1 C 1 polynomial spline approximation algorithms for large data sets
- 187 Downloads
- 3 Citations
Abstract
In this article, we address the problem of approximating data points by C 1-smooth polynomial spline curves or surfaces using L 1-norm. The use of this norm helps to preserve the data shape and it reduces extraneous oscillations. In our approach, we introduce a new functional which enables to control directly the distance between the data points and the resulting spline solution. The computational complexity of the minimization algorithm is nonlinear. A local minimization method using sliding windows allows to compute approximation splines within a linear complexity. This strategy seems to be more robust than a global method when applied on large data sets. When the data are noisy, we iteratively apply this method to globally smooth the solution while preserving the data shape. This method is applied to image denoising.
Keywords
L1 spline Approximation Smooth spline Noisy dataPreview
Unable to display preview. Download preview PDF.
References
- 1.Auquiert, P., Gibaru, O., Nyiri, E.: C 1 and C 2-continuous polynomial parametric lp splines (p ≥ 1). Comput. Aided Geom. Des. 24(7), 373–394 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Auquiert, P., Gibaru, O., Nyiri, E.: On the cubic L 1 spline interpolant to the heaviside function. Numer. Algoritm. 46(4), 321–332 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Auquiert, P.: Interpolation de points par des splines L 1 régulières. PhD thesis, Université de Valenciennes et du Hainaut-Cambrésis (2007)Google Scholar
- 4.Bozzini, M., Lenarduzzi, L.: Recovering functions: a method based on domain decomposition. Math. Comput. Simul. (2013). http://www.sciencedirect.com/science/article/pii/S0378475413000670
- 5.Bozzini, M., Lenarduzzi, L., Rossini, M.: Polyharmonic splines: an approximation method for noisy scattered data of extra-large size. Appl. Math. Comput. 216(1), 317–331 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Brézis, H., Ciarlet, P.G., Lions, J.-L.: Analyse fonctionnelle : théorie et applications. Mathématiques appliquées pour la maîtrise. Dunod, ParisGoogle Scholar
- 7.Castaño, D., Kunoth, A.: Multilevel regularization of wavelet based fitting of scattered data some experiments. Numer. Algoritm. 39(1–3), 81–96 (2005)CrossRefzbMATHGoogle Scholar
- 8.Chan, T.F., Esedoglu, S.: Aspects of total variation regularized L 1 function approximation. SIAM J. Appl. Math 65(5), 1817–1837 (2005)Google Scholar
- 9.Cheng, H., Fang, S.-C., Lavery, J.E.: Univariate cubic L 1 splines a geometric programming approach. Math. Meth. Oper. Res. 56(2), 197–229 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Cheng, H., Fang, S.-C., Lavery, J.E.: An efficient algorithm for generating univariate cubic L 1 splines. Comput. Optim. Appl. 29(2), 219–253 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 11.Chiu, N.-C., Fang, S.-C., Lavery, J.E., Lin, J.-Y., Wang, Y.: Approximating term structure of interest rates using cubic L 1 splines. Eur. J. Oper. Res. 184(3), 990–1004 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 12.Davydov, O., Sestini, A., Morandi, R.: Local RBF approximation for scattered data fitting with bivariate splines. In: Mache, D.H., Szabados, J., Bruin, M.G. (eds.) Trends and Applications in Constructive Approximation. ISNM International Series of Numerical Mathematics, vol. 151, pp. 91–102. Birkhuser Basel (2005)Google Scholar
- 13.De Boor, C.: A Practical Guide to Splines. Applied Mathematical Sciences. Springer, New York (2001)Google Scholar
- 14.Dobrev, V., Guermond, J.-L., Popov, B.: Surface reconstruction and image enhancement via L 1-minimization. SIAM J. Sci. Comput. 32(3), 1591–1616 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
- 15.Hoschek, J., Lasser, D., Schumaker, L.L.: Fundamentals of Computer-Aided Geometric Design. Wellesley, Mass. A.K. Peters (1993)Google Scholar
- 16.Lavery, J.E.: Shape-preserving, multiscale fitting of univariate data by cubic L 1 smoothing splines. Comput. Aided Geom. Des. 17(7), 715–727 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 17.Lavery, J.E.: Univariate cubic L p splines and shape-preserving, multiscale interpolation by univariate cubic L 1 splines. Comput. Aided Geom. Des. 17(4), 319–336 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 18.Lavery, J.E.: Shape-preserving, multiscale interpolation by bi- and multivariate cubic L 1 splines. Comput. Aided Geom. Des. 18(4), 321–343 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 19.Lavery, J.E.: Shape-preserving approximation of multiscale univariate data by cubic L 1 spline fits. Comput. Aided Geom. Des. 21(1), 43–64 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Nyiri, É., Gibaru, O, Auquiert, P.: Fast \(L_{1}^kC^{k}\) polynomial spline interpolation algorithm with shape-preserving properties. Comput. Aided Geom. Des. 28(1), 65–74 (2011).CrossRefzbMATHMathSciNetGoogle Scholar
- 21.Nyiri, É., Gibaru, O., Auquiert, P.: Nonlinear L 1 C 1 interpolation: application to images. In: Proceedings of the 7th International Conference on Curves and Surfaces, pp. 515–526. Springer, Berlin (2012)Google Scholar
- 22.Piegl, L.A., Wayne, T.: The NURBS book. Monographs in visual communications. NURBS: Non-Uniform Rational B-Splines. Springer, Berlin (1997)Google Scholar
- 23.Vanderbei, R.J.: Affine-scaling for linear programs with free variables. Math. Program. 43(1–3), 31–44 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 24.Zheng, W., Bo, P., Liu, Y., Wang, W.: Fast B-spline curve fitting by L-BFGS. Comput. Aided Geom. Des. 29(7), 448–462 (2012). Geometric Modeling and Processing 2012CrossRefzbMATHMathSciNetGoogle Scholar