Numerical Algorithms

, Volume 66, Issue 3, pp 609–641 | Cite as

An approximate eigensolver for self-consistent field calculations

  • Harald Hofstätter
  • Othmar Koch
Original Paper


In this paper, we give a comprehensive error analysis for an approximate solution method for the generalized eigenvalue problems arising for instance in the context of electronic structure computations based on density functional theory. The solution method has been demonstrated to excel as compared to established solvers in both computational effort and scaling for parallelization. Here we estimate the improvement provided by our proposed subspace method starting from the initial approximations for instance provided in the course of the self-consistent field iteration, showing that in general the approximation quality is improved by our method to yield sufficiently accurate eigenvalues.


Electronic structure computations Density functional theory Generalized eigenvalue problem Iterative diagonalization 

Mathematics Subject Classifications (2010)

65F15 65F08 65Z05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bendtsen, C., Nielsen, O., Hansen, L.: Solving large nonlinear generalized eigenvalue problems from density functional theory calculations in parallel. Appl. Numer. Math. 37, 189–199 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Blaha, P., Hofstätter, H., Koch, O., Laskowsky, R., Schwarz, K.: Iterative diagonalization in APW based methods in electronic structure calculations. J. Comput. Phys. 229, 453–460 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Blaha, P., Schwarz, K., Madsen, G.: Electronic structure calculations of solids using the WIEN2k package for material sciences. Comput. Phys. Commun. 147, 71–76 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: An augmented plane wave plus local orbital program for calculating crystal properties.  ISBN 3-9501031-1-2 (2001)Google Scholar
  5. 5.
    Crouzeix, M., Philippe, B., Sadkane, M.: The Davidson method. SIAM J. Sci. Comput. 15, 62–76 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Davidson, E.: The iterative calculation of a few of the lowest eigenvalues and corresponding eigenvectors of large real-symmetric matrices. J. Comput. Phys. 17, 87–94 (1975)CrossRefzbMATHGoogle Scholar
  7. 7.
    Garcia-Cervera, C.J., Lu, J., Xuan, Y., Weinan, E.: Linear-scaling subspace-iteration algorithm with optimally localized nonorthogonal wave functions for Kohn-Sham density functional theory. Phys. Rev. B  79, 115110 (2009)CrossRefGoogle Scholar
  8. 8.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864 (1964)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Horn, R.A., Johnson, C.R.: Matrix Analysis. Cambridge University Press (1990)Google Scholar
  10. 10.
    Kohn, W., Sham, L.J.: Self-consistent equations including exchange and correlation effects. Phys. Rev. 140(4A), A1133 (1965)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Kresse, G., Furthmüller, J.: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  12. 12.
    Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
  13. 13.
    Kresse, G., Furthmüller, J.: VASP the GUIDE (2007). Available at
  14. 14.
    Lascoux, A., Pragacz, P.: Jacobians of symmetric polynomials. Ann. Comb. 6, 169–172 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Laskowski, R., Blaha, P.: Unraveling the structure of the h-BN/Rh(111) nanomesh with ab initio calculations. J. Phys. Condens. Matter 20, 064207 (2008)CrossRefGoogle Scholar
  16. 16.
    Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)CrossRefGoogle Scholar
  17. 17.
    Pulay, P.: Convergence acceleration of iterative sequences. The case of SCF iteration. Chem. Phys. Lett. 73, 393 (1980)CrossRefGoogle Scholar
  18. 18.
    Rayson, M.J., Briddon, P.R.: Rapid iterative method for electronic-structure eigenproblems using localized basis functions. Comput. Phys. Commun. 178, 128–134 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Schwarz, K.: DFT calculations of solids with LAPW and WIEN2k. Solid State Commun. 176, 319–328 (2003)CrossRefGoogle Scholar
  20. 20.
    Schwarz, K., Blaha, P.: Solid state calculations using WIEN2k. Comput. Mater. Sci. 28, 259–273 (2003)CrossRefGoogle Scholar
  21. 21.
    Singh, D.: Simultaneous solution of diagonalization and self-consistency problems for transition-metal systems. Phys. Rev. B 40, 5428–5431 (1989)CrossRefGoogle Scholar
  22. 22.
    Sleijpen, G.L.G., Booten, A.G.L., Fokkema, D.R., Van der Vorst, H.A.: Jacobi-Davidson type methods for generalized eigenproblems and polynomial eigenproblems. BIT 36(3), 595–633 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Sleijpen, G.L.G., Van der Vorst, H.A.: A Jacobi-Davidson iteration method for linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17(2), 401–425 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Teter, M.P., Payne, M., Allan, D.C.: Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40(18), 12255 (1989)CrossRefGoogle Scholar
  25. 25.
    van Dam, H.J.J., van Lenthe, J.H., Sleijpen, G.L.G., van der Vorst, H.A.: An improvement of Davidson’s iteration method. J. Comput. Chem. 17(3), 267–272 (1996)CrossRefGoogle Scholar
  26. 26.
    VandeVondele, J., Hutter, J.: An efficient orbital transformation mathod for electronic structure calculations. J. Chem. Phys. 118(10), 4365–4369 (2003)CrossRefGoogle Scholar
  27. 27.
    Wood, D.M., Zunger, A.: A new method for diagonalising large matrices. J. Phys. A: Math. Gen. 18, 1343–1359 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Yang, C., Gao, W., Meza, J.C.: On the convergence of the self-consistent field iteration for a class of nonlinear eigenvalue problems. SIAM J. Matrix Anal. Appl. 30, 1773–1788 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  29. 29.
    Zhou, Y., Saad, Y., Tiago, M., Chelikowsky, J.: Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration. Phys. Rev. E 74, 066704 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Analysis and Scientific ComputingVienna University of TechnologyWienAustria

Personalised recommendations