Numerical Algorithms

, Volume 66, Issue 1, pp 89–104 | Cite as

Fast solvers for discretized Navier-Stokes problems using vector extrapolation

  • Sebastien Duminil
  • Hassane Sadok
  • David Silvester
Original Paper

Abstract

We discuss the design and implementation of a vector extrapolation method for computing numerical solutions of the steady-state Navier-Stokes equation system. We describe a “proof of concept” implementation of vector extrapolation, and we illustrate its effectiveness when integrated into the Incompressible Flow Iterative Solution Software (IFISS) package ( http://www.manchester.ac.uk/ifiss).

Keywords

Navier-Stokes problem Vector extrapolation Nonlinear system Reduced Rank extrapolation Picard method Newton method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Brezinski, C.: Généralisation de la transformation de Shanks, de la table de Padé et de l’epsilon-algorithm. Calcolo 12, 317–360 (1975)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods Theory and Practice. North-Holland, Amsterdam (1991)MATHGoogle Scholar
  3. 3.
    Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Duminil, S., Sadok, H.: Reduced rank extrapolation applied to electronic structure computations. Electron. Trans. Numer. Anal. 38, 347–362 (2011)MathSciNetGoogle Scholar
  5. 5.
    Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp. 387–396. Academic Press, New-York (1979)Google Scholar
  6. 6.
    Elman, H., Ramage, A., Silvester, D.: Algorithm 866: IFISS, a Matlab toolbox for modelling incompressible flow. ACM Trans. Math. Softw. 33, 2–14 (2007)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Elman, H., Silvester, D., Wathen, A.: Finite Elements and Fast Iterative Solvers: Eith Applications in Incompressible Fluid Dynamics. Oxford University Press, Oxford (2005). ISBN: 978-0-19-852868-5; 0-19-852868-XGoogle Scholar
  8. 8.
    Gresho, P.M., Gartling, D.K., Torczynski, J.R., Cliffe, K.A., Winters, K.H., Garratt, T.J., Spence, A., Goodrich, J.W.: Is the steady viscous incompressible 2D flow over a backward facing step at Re = 800 stable. Int. J. Numer. Methods Fluids 17, 501–541 (1993)CrossRefMATHGoogle Scholar
  9. 9.
    Jbilou, K.: A general projection algorithm for solving linear systems of equations. Numer. Algoritm. 4, 361–377 (1993)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Jbilou, K., Reichel, L., Sadok, H.: Vector extrapolation enhanced TSVD for linear discrete ill-posed problems. Numer. Algoritm. 51, 195–208 (2009)CrossRefMATHMathSciNetGoogle Scholar
  11. 11.
    Jbilou, K., Sadok, H.: Some results about vector extrapolation methods and related fixed point iterations. J. Comput. Appl. Math. 36, 385–398 (1991)CrossRefMATHMathSciNetGoogle Scholar
  12. 12.
    Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)CrossRefMATHMathSciNetGoogle Scholar
  14. 14.
    Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)CrossRefMATHMathSciNetGoogle Scholar
  15. 15.
    Mes̀ina M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Methods Appl. Mech. Eng. 10(2), 165–173 (1977)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. U.S.S.R. Comput. Math. Math. Phys. 17, 199–207 (1978)CrossRefGoogle Scholar
  17. 17.
    Saad, Y.: Krylov subspace methods for solving large unsymmetric linear systems. Math. Comput. 37, 105–126 (1981)CrossRefMATHMathSciNetGoogle Scholar
  18. 18.
    Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Sidi, A.: Extrapolation vs. projection methods for solving linear systems of equations. J. Comput. Appl. Math. 22, 71–88 (1988)CrossRefMATHMathSciNetGoogle Scholar
  20. 20.
    Sidi, A.: Efficient implementation of minimal polynomial and reduced rank extrapolation methods. J. Comput. Appl. Math. 36, 305–337 (1991)CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Sidi, A.: Vector extrapolation methods with applications to solution of large systems of equations and to Page rank computations. Comput. Math. Appl. 56, 1–24 (2008)CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)CrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987)CrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    Silvester, D., Elman, H., Ramage, A.: Incompressible Flow and Iterative Solver Software (IFISS) version 3.2. Available online at http://www.manchester.ac.uk/ifiss (2012)

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Sebastien Duminil
    • 1
  • Hassane Sadok
    • 1
  • David Silvester
    • 2
  1. 1.Laboratoire de Mathématiques Pures et AppliquéesUniversité du LittoralCalaisFrance
  2. 2.School of MathematicsUniversity of ManchesterManchesterUK

Personalised recommendations