Advertisement

Numerical Algorithms

, Volume 66, Issue 1, pp 17–32 | Cite as

On the incomplete oblique projections method for solving box constrained least squares problems

  • H. Scolnik
  • N. Echebest
  • M. T. Guardarucci
Original Paper
  • 179 Downloads

Abstract

The aim of this paper is to extend the applicability of the incomplete oblique projections method (IOP) previously introduced by the authors for solving inconsistent linear systems to the box constrained case. The new algorithm employs incomplete projections onto the set of solutions of the augmented system Ax − r = b, together with the box constraints, based on a scheme similar to the one of IOP, adding the conditions for accepting an approximate solution in the box. The theoretical properties of the new algorithm are analyzed, and numerical experiences are presented comparing its performance with some well-known methods.

Keywords

Inconsistent systems Box constrained Incomplete projections 

Mathematics Subject Classification (2010)

65F10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bauschke, H.H.: The approximation of fixed points of compositions of nonexpansve mappings in Hilbert space. J. Math. Anal. Appl. 202, 150–159 (1996)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Browne, J.A., Herman, G.T., Odhner, D.: SNARK93: A Programming System for Image Reconstruction from Projections. Department of Radiology, University of Pennsylvania, Medical Image Processing Group. Technical Report MIPG198 (1993)Google Scholar
  3. 3.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18, 441–453 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Byrne, C., Censor, Y.: Proximity function minimization using multiple Bregman projections with applications to split feasibility and Kullback-Leibler distance minimization. Ann. Oper. Res. 105, 77–98 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Censor, Y., Zenios, S.: Parallel Optimization: Theory and Applications. Oxford University Press, New York (1997)zbMATHGoogle Scholar
  6. 6.
    Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27, 777–808 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Censor, Y., Elfving, T.: Block-iterative algorithms with diagonally scaled oblique projections for the linear feasibility problem. SIAM J. Matrix Anal. Appl. 24, 40–58 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Censor, Y.: Computational acceleration of projections algorithms for linear best approximation problem. Linear Algebra Appl. 416, 111–123 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Combettes, P.L.: Construction d’un point fixe commun a famille de contractions fermes. C.R. Acad. Sci. Paris, Ser. I Math. 320 (1995)Google Scholar
  10. 10.
    Csiszár, I., Tusnády, G.: Information geometry and alternating minimization procedures. Stat. Decis. Suppl. 1, 205–237 (1984)Google Scholar
  11. 11.
    Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance profiles. Math. Program. 91, 201–213 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    García, Palomares, U.M.: Parallel projected aggregation methods for solving the convex feasibility problem. SIAM J. Optim. 3, 882–900 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Jiang, M., Wang, G.: Convergence studies on iterative algorithms for image reconstruction. IEEE Trans. Med. Imaging 22, 569–579 (2003)CrossRefGoogle Scholar
  14. 14.
    Landweber, L.: An iteration formula for Fredholm integral equations of the first kind. Am. J. Math. 73, 615–624 (1951)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic Press, New York and London (1970)zbMATHGoogle Scholar
  16. 16.
    Popa, C., Zdunek, R.: Kaczmarz extended algorithm for tomographic image reconstruction from limited-data. Math. Comput. Simul. 65, 579–598 (2004)CrossRefMathSciNetGoogle Scholar
  17. 17.
    Portugal, L.I., Judice, J., Vincente, L.N.: A comparison of block pivoting and interior-point algorithms for linear least squares problem with nonnegative variables. Math. Comput. 63, 625–643 (1994)CrossRefzbMATHGoogle Scholar
  18. 18.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C.: A class of optimized row projection methods for solving large non-symmetric linear systems. Appl. Numer. Math. 41, 499–513 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C.: Incomplete oblique projections for solving large inconsistent linear systems. Math. Program. B. 111, 273–300 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T.: Regularized incomplete oblique projections method for solving least-squares problems in image reconstruction. Int. Trans. Oper. Res. 15, 417–438 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T.: Extensions of incomplete oblique projections for rank-deficient problems. J. Ind. Manag. Optim. (JIMO) 5, 175–191 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Scolnik, H.D., Echebest, N., Guardarucci, M.T.: Implicit regularization of the incomplete oblique projections methods. Int. Trans. Oper. Res. 16, 525–546 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Stark, P.B., Parker, R.L.: Bounded variable least squares: an algorithm and applications. J. Comput. Stat. 10, 129–141 (1995)zbMATHGoogle Scholar
  24. 24.
    Xiao, Y., Michalski, D., Censor, Y., Galvin, J.M.: Inherent smoothness of intensity patterns for intensity radiation therapy generated by simultaneous projection algorithms. Phys. Med. Biol. 49, 3227–3245 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Departamento de Computación, Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  2. 2.Departamento de Matemática, Facultad de Ciencias ExactasUniversidad Nacional de La PlataLa PlataArgentina
  3. 3.Departamento de Ciencias Básicas, Facultad de IngenieríaUniversidad Nacional de La PlataLa PlataArgentina

Personalised recommendations