Advertisement

Numerical Algorithms

, Volume 62, Issue 4, pp 637–653 | Cite as

Accelerating data uncertainty quantification by solving linear systems with multiple right-hand sides

  • V. Kalantzis
  • C. Bekas
  • A. Curioni
  • E. Gallopoulos
Original Paper

Abstract

The subject of this work is accelerating data uncertainty quantification. In particular, we are interested in expediting the stochastic estimation of the diagonal of the inverse covariance (precision) matrix that holds a wealth of information concerning the quality of data collections, especially when the matrices are symmetric positive definite and dense. Schemes built on direct methods incur a prohibitive cubic cost. Recently proposed iterative methods can remedy this but the overall cost is raised again as the convergence of stochastic estimators can be slow. The motivation behind our approach stems from the fact that the computational bottleneck in stochastic estimation is the application of the precision matrix on a set of appropriately selected vectors. The proposed method combines block conjugate gradient with a block-seed approach for multiple right-hand sides, taking advantage of the nature of the right-hand sides and the fact that the diagonal is not sought to high accuracy. Our method is applicable if the matrix is only known implicitly and also produces a matrix-free diagonal preconditioner that can be applied to further accelerate the method. Numerical experiments confirm that the approach is promising and helps contain the overall cost of diagonal estimation as the number of samples grows.

Keywords

Uncertainty quantification Matrix-free methods Iterative Preconditioning Multiple right-hand sides Conjugate gradient Block conjugate gradient Seed methods Stochastic diagonal of inverse estimator Rademacher vectors 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abdel-Rehim, A.M., Morgan, R.B., Nicely, D.A., Wilcox, W.: Deflated and restarted symmetric Lanczos methods for eigenvalues and linear equations with multiple right-hand sides. SIAM J. Sci. Comput. 32, 129–149 (2010)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Abdel-Rehim, A.M., Morgan, R.B., Wilcox, W.: Improved seed methods for symmetric positive definite linear equations with multiple right-hand sides (2008). http://arxiv.org/abs/0810.0330 [math-ph]
  3. 3.
    Anitescu, M., Chen, J., Wang, L.: A matrix-free approach for solving the Gaussian process maximum likelihood problem. SIAM J. Sci. Comput. 34(1), A240–A262 (2012)Google Scholar
  4. 4.
    Avron, H., Toledo, S.: Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix. J. ACM 58(2), 8 (2011)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Bai, Z., Fahey, M., Golub, G.: Some large-scale matrix computation problems. J. Comput. Appl. Math. 74, 71–89 (1996)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Bai, Z., Golub, G.H.: Bounds for the trace of the inverse and the determinant of symmetric positive definite matrices. Ann. Numer. Math. 4, 29–38 (1997)MathSciNetMATHGoogle Scholar
  7. 7.
    Bekas, C., Curioni, A., Fedulova, I.: Low cost high perf. uncertainty quantification. In: Worskhop on High Performance Computational Finance, Supercomputing’09, Portland. Portland, Oregon (2009)Google Scholar
  8. 8.
    Bekas, C., Curioni, A., Fedulova, I.: Low-cost data uncertainty quantification. Concurr. Comput.: Practice and Experience 24(8), 908–920 (2012)Google Scholar
  9. 9.
    Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix. Appl. Numer. Math. 57, 1214–1229 (2007)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Bekas, C., Kokiopoulou, E., Saad, Y.: Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30, 397–418 (2008)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Bouyouli, R., Jbilou, K., Sadaka, R., Sadok, H.: Convergence properties of some block Krylov subspace methods for multiple linear systems. J. Comput. Appl. Math. 196(2), 498–511 (2006)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Brezinski, C., Fika, P., Mitrouli, M.: Moments of a linear operator, with applications to the trace of the inverse of matrices and the solution of equations. Numer. Linear Algebra Appl. (2011)Google Scholar
  13. 13.
    Cao, G., Bachega, L.R., Bouman, C.A.: The sparse matrix transform for covariance estimation and analysis of high dimensional signals. IEEE Trans. Image Process 20, 625–640 (2011)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Chan, T.F., Wan, W.L.: Analysis of projection methods for solving linear systems with multiple right-hand sides. SIAM J. Sci. Statist. Comput 18(6), 1698–1721 (1997)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Chen, J.: A deflated version of the block conjugate gradient algorithm with an application to Gaussian process maximum likelihood estimation. Argonne National Laboratory (2011, Preprint). ANL/MCS-P1927-0811Google Scholar
  16. 16.
    Du, L., Sogabe, T., Yu, B., Yamamoto, Y., Zhang, S.L.: A block IDR(s) method for nonsymmetric linear systems with multiple right-hand sides. J. Comput. Appl. Math. 235(14), 4095–4106 (2011)MathSciNetMATHCrossRefGoogle Scholar
  17. 17.
    Giraud, L., Ruiz, D., Touhami, A.: A comparative study of iterative solvers exploiting spectral information for spd systems. SIAM J. Sci. Comput. 27(5), 1760–1786 (2006)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton University Press (2010)Google Scholar
  19. 19.
    Golub, G.H., Ruiz, D., Touhami, A.: A hybrid approach combining Chebyshev filter and conjugate gradient for solving linear systems with multiple right-hand sides. SIAM J. Matrix Anal. Appl. 29, 774–795 (2007)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Gutknecht, M.: Block Krylov space methods for linear systems with multiple right-hand sides: an introduction. In: Siddiqi, A.H., Duff, I.S., Christensen, O. (eds.) Modern Mathematical Models, Methods and Algorithms for Real World Systems, pp. 420–447. Anamaya Publishers, New Delhi (2007)Google Scholar
  21. 21.
    Hartlap, J., Simon, P., Schneider, P.: Why your model parameter confidences might be too optimistic—unbiased estimation of the inverse covariance matrix. Astron. Astrophys 464, 399–404 (2007)CrossRefGoogle Scholar
  22. 22.
    Hutchinson, .M.: A stochastic estimator for the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 18, 1059–1076 (1989)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Kilmer, M., Miller, E., Rappaport, C.: QMR-based projection techniques for the solution of non-Hermitian systems with multiple right-hand sides. SIAM J. Sci. Comput. 23(3), 761–780 (2001)MathSciNetMATHCrossRefGoogle Scholar
  24. 24.
    Ledoit, O., Wolf, M.: A well-conditioned estimator for large-dimensional covariance matrices. J. Multivar. Anal. 88, 365–411 (2004)MathSciNetMATHCrossRefGoogle Scholar
  25. 25.
    Lin, L., Yang, C., Meza, J.C., Lu, J., Ying, L., Weinan, E.: SelInv—an algorithm for selected inversion of a sparse symmetric matrix. ACM Trans. Math. Softw. 7(4), 40:1–40:19 (2011)Google Scholar
  26. 26.
    Meurant, G.: Estimates of the trace of the inverse of a symmetric matrix using the modified Chebyshev algorithm. Numer. Algor. 51, 309–318 (2009)MathSciNetMATHCrossRefGoogle Scholar
  27. 27.
    O’Leary, D.P.: The block conjugate gradient algorithm and related methods. Linear Algebra Appl. 29, 293–322 (1980)MathSciNetMATHCrossRefGoogle Scholar
  28. 28.
    Oliver, D.S.: Calculation of the inverse of the covariance. Math. Geol. 30(7), 911–933 (1998)MathSciNetMATHCrossRefGoogle Scholar
  29. 29.
    Parks, M.L., de, S.turler., E., Mackey, G., Johnson, D.D., Maiti, S.: Recycling Krylov subspaces for sequences of linear systems. SIAM J. Sci. Comput. 28(5), 1651–1674 (2006)MathSciNetMATHCrossRefGoogle Scholar
  30. 30.
    Parlett, B.N.: A new look at the Lanczos algorithm for solving symmetric systems of linear equations. Linear Algebra Appl. 29, 323–346 (1980)MathSciNetMATHCrossRefGoogle Scholar
  31. 31.
    Saad, Y.: On the Lanczos method for solving symmetric systems with several right hand sides. Math. Comput. 48, 651–662 (1987)MathSciNetMATHGoogle Scholar
  32. 32.
    Simoncini, V., Gallopoulos, E.: An iterative method for nonsymmetric systems with multiple right-hand sides. SIAM J. Sci. Comput. 16(4), 917–933 (1995)MathSciNetMATHCrossRefGoogle Scholar
  33. 33.
    Smith, C.F., Peterson, A.F., Mittra, R.: A conjugate gradient algorithm for the treatment of multiple incident electromagnetic fields. IEEE Trans. Antennas Propag. 37, 1490–1493 (1989)CrossRefGoogle Scholar
  34. 34.
    Stathopoulos, A., Orginos, K.: Computing and deflating eigenvalues while solving multiple right-hand hide linear systems with an application to quantum chromodynamics. SIAM J. Sci. Comput 32, 439–462 (2010)MathSciNetMATHCrossRefGoogle Scholar
  35. 35.
    Stevens, G.V.G.: On the inverse of the covariance matrix in portfolio analysis. J. Finance 53, 1821–1827 (1998)CrossRefGoogle Scholar
  36. 36.
    Tang, J.M., Saad, Y.: A probing method for computing the diagonal of a matrix inverse. Numer. Linear Algebra Appl. 19(3), 485–501 (2012)MathSciNetCrossRefGoogle Scholar
  37. 37.
    Visweswariah, K., Olsen, P., Gopinath, R., Axelrod, S.: Maximum likelihood training of subspaces for inverse covariance modeling. In: Proc. ICASSP, vol. 1, pp. 848–851 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. Kalantzis
    • 1
  • C. Bekas
    • 2
  • A. Curioni
    • 2
  • E. Gallopoulos
    • 1
  1. 1.Computer Engineering & Informatics DepartmentUniversity of PatrasPatrasGreece
  2. 2.IBM Research - ZurichRüeschlikonSwitzerland

Personalised recommendations