Numerical Algorithms

, Volume 64, Issue 3, pp 567–592

# Low-rank approximation of integral operators by using the Green formula and quadrature

Original Paper

## Abstract

Approximating integral operators by a standard Galerkin discretisation typically leads to dense matrices. To avoid the quadratic complexity it takes to compute and store a dense matrix, several approaches have been introduced including $$\mathcal {H}$$-matrices. The kernel function is approximated by a separable function, this leads to a low rank matrix. Interpolation is a robust and popular scheme, but requires us to interpolate in each spatial dimension, which leads to a complexity of $$m^d$$ for $$m$$-th order. Instead of interpolation we propose using quadrature on the kernel function represented with Green’s formula. Due to the fact that we are integrating only over the boundary, we save one spatial dimension compared to the interpolation method and get a complexity of $$m^{d-1}$$.

### Keywords

Integral equations Data-sparse approximation Quadrature Green’s formula Hierarchical matrices

## Preview

Unable to display preview. Download preview PDF.

### References

1. 1.
Anderson, C.R.: An implementation of the fast multipole method without multipoles. SIAM J. Sci. Stat. Comput. 13, 923–947 (1992)
2. 2.
Bebendorf, M.: Approximation of boundary element matrices. Numer. Math. 86(4), 565–589 (2000)
3. 3.
Bebendorf, M., Rjasanow, S.: Adaptive low-rank approximation of collocation matrices. Computing 70(1), 1–24 (2003)
4. 4.
Börm, S.: Efficient Numerical Methods for Non-local Operators: $${\mathcal H}^2$$-Matrix Compression, Algorithms and Analysis. EMS Tracts in Mathematics, vol. 14. EMS (2010)Google Scholar
5. 5.
Börm, S., Grasedyck, L.: Low-rank approximation of integral operators by interpolation. Computing 72, 325–332 (2004)
6. 6.
Börm, S., Grasedyck, L.: Hybrid cross approximation of integral operators. Numer. Math. 101, 221–249 (2005)
7. 7.
Börm, S., Grasedyck, L., Hackbusch,W.: Introduction to hierarchical matrices with applications. Eng. Anal. Bound. Elem. 27, 405–422 (2003)
8. 8.
Cheng, H., Gimbutas, Z., Martinsson, P.-G., Rokhlin, V.: On the compression of low rank matrices. SIAM J. Sci. Comput. 26(4), 1389–1404 (2005)
9. 9.
Dahmen,W., Schneider, R.:Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)
10. 10.
Goreinov, S.A., Tyrtyshnikov, E.E., Zamarashkin, N.L.: A theory of pseudoskeleton approximations. Linear Algebra Appl. 261, 1–22 (1997)
11. 11.
Goreinov, S.A., Zamarashkin, N.L., Tyrtyshnikov, E.E.: Pseudo-skeleton approximations by matrices of maximal volume. Math. Notes 62, 515–519 (1997)
12. 12.
Green, G.: An essay on the application of mathematical analysis to the theories of electricity and magnetism. Nottingham (1828)Google Scholar
13. 13.
Greengard, L., Gueyffier, D., Martinsson, P.-G., Rokhlin, V.: Fast direct solvers for integral equations in complex three-dimensional domains. Acta Numer. 18, 243–275 (2009)
14. 14.
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987)
15. 15.
Greengard, L., Rokhlin, V.: A new version of the fast multipole method for the laplace in three dimensions. In: Acta Numerica 1997, pp. 229–269. Cambridge University Press, Cambridge, MA (1997)Google Scholar
16. 16.
Hackbusch, W.: Elliptic Differential Equations. Theory and Numerical Treatment. Springer-Verlag, Berlin (1992)
17. 17.
Hackbusch, W.: A sparse matrix arithmetic based on $$\mathcal {H}$$-matrices. Part I: Introduction to $$\mathcal {H}$$-matrices. Computing 62, 89–108 (1999)
18. 18.
Hackbusch, W.: Hierarchische Matrizen—Algorithmen und Analysis. Springer, New York (2009)
19. 19.
Hackbusch, W., Khoromskij, B.N.: A sparse matrix arithmetic based on $$\mathcal {H}$$-matrices. Part II: Application to multi-dimensional problems. Computing 64, 21–47 (2000)
20. 20.
Hackbusch, W., Khoromskij, B.N., Sauter, S.A.: On $$\mathcal {H}^2$$-matrices. In: Bungartz, H., Hoppe, R., Zenger, C. (eds.) Lectures on Applied Mathematics, pp. 9–29. Springer-Verlag, Berlin (2000)Google Scholar
21. 21.
Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math. 54, 463–491 (1989)
22. 22.
Makino, J.: Yet another fast multipole method without multipoles—pseudoparticle multipole method. J. Comput. Phys. 151, 910–920 (1999)
23. 23.
Martinsson, P.-G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comput. Phys. 205, 1–23 (2005)
24. 24.
Tyrtyshnikov, E.E.: Incomplete cross approximation in the mosaic-skeleton method. Computing 64, 367–380 (2000)
25. 25.
Ying, L., Biros, G., Zorin, D.: A kernel-independent adaptive fast multipole algorithm in two and three dimensions. J. Comput. Phys. 196(2), 591–626 (2004)

## Copyright information

© Springer Science+Business Media New York 2013

## Authors and Affiliations

1. 1.Christian-Albrechts-Universität zu KielKielGermany