Numerical Algorithms

, Volume 63, Issue 4, pp 679–689 | Cite as

Butcher algebras for Butcher systems

Original Paper

Abstract

We investigate rigorously the properties of the Butcher upper and lower algebras introduced earlier. This investigation provides a new representation of the order conditions which leads to a new approach to simplifying conditions and a way to obtain new methods of high orders explicitly.

Keywords

Runge-Kutta Butcher system Butcher equations Butcher algebra Algebraic approach to Runge-Kutta 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Albrecht, P.: The theory of A-methods. Numer. Math. 47, 59–87 (1985)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Butcher, J.: Coefficients for the study of Runge-Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Butcher, J.: Implicit Runge–Kutta processes. Math. Comput. 18, 50–64 (1964)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Butcher, J.: On Runge–Kutta processes of high order. J. Aust. Math. Soc. 4, 179–194 (1964)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley (2008)Google Scholar
  6. 6.
    Butcher, J.C.: On fifth and sixth order explicit Runge-Kutta methods: order conditions and order barriers. Can. Appl. Math. Q. 17, 433–445 (2009)MathSciNetMATHGoogle Scholar
  7. 7.
    Feagin, T.: A tenth-order Runge-Kutta method with error estimate. In: Proceedings of the IAENG Conf. on Scientific Computing (2007)Google Scholar
  8. 8.
    Hairer, J.: A Runge-Kutta method of order 10. J. Inst. Math. Appl. 21, 47–59 (1978)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Hairer, J.L., Nørsett, S.P.: Solving ordinary differential equations I. Nonstiff problems, 2nd edn. Springer-Verlag (2000)Google Scholar
  10. 10.
    Khashin, S.: A symbolic-numeric approach to the solution of the Butcher equations. Can. Appl. Math. Q. 17(3), 555–569 (2009)MathSciNetMATHGoogle Scholar
  11. 11.
    Lang, S.: Algebra, Graduate Texts in Mathematics, 211 (Revised 3rd edn.). Springer, New York, ISBN 978-0-387-95385-4, MR1878556 (2002)CrossRefGoogle Scholar
  12. 12.
    Levin, A.: Difference Algebra. Springer, ISBN 978-1-4020-6946-8 (2008)Google Scholar
  13. 13.
    Verner, J.: High-order explicit Runge–Kutta pairs with low stage order. Appl. Numer. Math. 22(1–3), 345–357 (1996)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of MathematicsIvanovo State UniversityIvanovoRussia

Personalised recommendations