Advertisement

Numerical Algorithms

, Volume 63, Issue 2, pp 339–355 | Cite as

Review of inverse Laplace transform algorithms for Laplace-space numerical approaches

  • Kristopher L. Kuhlman
Original Paper

Abstract

A boundary element method (BEM) simulation is used to compare the efficiency of numerical inverse Laplace transform strategies, considering general requirements of Laplace-space numerical approaches. The two-dimensional BEM solution is used to solve the Laplace-transformed diffusion equation, producing a time-domain solution after a numerical Laplace transform inversion. Motivated by the needs of numerical methods posed in Laplace-transformed space, we compare five inverse Laplace transform algorithms and discuss implementation techniques to minimize the number of Laplace-space function evaluations. We investigate the ability to calculate a sequence of time domain values using the fewest Laplace-space model evaluations. We find Fourier-series based inversion algorithms work for common time behaviors, are the most robust with respect to free parameters, and allow for straightforward image function evaluation re-use across at least a log cycle of time.

Keywords

Numerical Laplace transform inversion Boundary element method Diffusion Helmholtz equation Laplace-space numerical methods Groundwater modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abate, J., Valkó, P.: Multi-precision Laplace transform inversion. Int. J. Numer. Methods Eng. 60, 979–993 (2004). doi: 10.1002/nme.995 zbMATHCrossRefGoogle Scholar
  2. 2.
    Al-Shuaibi, A.: Inversion of the Laplace transform via Post-Widder formula. Integral Transforms Spec. Funct. 11(3), 225–232 (2001). doi: 10.1080/10652460108819314 MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Antia, H.: Numerical Methods for Scientists and Engineers, 2nd edn. Birkhäuser, Cambridge, MA (2002)Google Scholar
  4. 4.
    Bailey, D.H., Hida, Y., Li, X.S., Thompson, B.: ARPREC: An Arbitrary Precision Computation Package. Tech. Rep. LBNL-53651, Lawrence Berkley National Lab (2002)Google Scholar
  5. 5.
    Bakker, M., Kuhlman, K.: Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation. Adv. Water Resour. (2011). doi: 10.1016/j.advwatres.2011.02.008 Google Scholar
  6. 6.
    Barnhart, K.S., Illangasekare, T.H.: Automatic transport model data assimilation in Laplace space. Water Resour. Res. 48, W01510, 12 (2012). doi: 10.1029/2011WR010955 CrossRefGoogle Scholar
  7. 7.
    Bellman, R., Kalaba, R.E., Lockett, J.A.: Numerical Inversion of the Laplace Transform: Applications to Biology, Economics, Engineering, and Physics. Elsevier, Amsterdam, The Netherlands; New York (1966)zbMATHGoogle Scholar
  8. 8.
    Brebbia, C., Telles, J., Wrobel, L.: Boundary Element Techniques: Theory and Practice in Engineering. Springer, Berlin Heidelberg New York (1984)CrossRefGoogle Scholar
  9. 9.
    Cohen, A.M.: Numerical Methods for Laplace Transform Inversion. Springer, Berlin Heidelberg New York (2007)zbMATHGoogle Scholar
  10. 10.
    Davies, A., Crann, D.: Parallel Laplace transform methods for boundary element solutions to diffusion-type problems. J. Boundary Elements BETEQ 2001(1), 231–238 (2002)Google Scholar
  11. 11.
    Davies, B.: Integral Transforms and their Applications, 3rd edn. Springer, Berlin Heidelberg New York (2005)Google Scholar
  12. 12.
    Davies, B., Martin, B.: Numerical inversion of the Laplace transform: a survey and comparison of methods. J. Comput. Phys. 33, 1–32 (1979). doi: 10.1016/0021-9991(79)90025-1 MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    de Hoog, F., Knight, J., Stokes, A.: An improved method for numerical inversion of Laplace transforms. SIAM J. Sci. Statist. Comput. 3, 357–366 (1982). doi: 10.1137/0903022 MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Duffy, D.G.: On the numerical inversion of Laplace transforms: comparison of three new methods on characteristic problems from applications. ACM Trans. Math. Softw. 19(3), 333–359 (1993). doi: 10.1145/155743.155788 MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Duffy, D.G.: Transform Methods for Solving Partial Differential Equations. CRC Press, Boca Raton, FL (2004)zbMATHCrossRefGoogle Scholar
  16. 16.
    Hantush, M.: Modification of the theory of leaky aquifers. J. Geophys. Res. 65(11), 3713–3725 (1960). doi: 10.1029/JZ065i011p03713 CrossRefGoogle Scholar
  17. 17.
    Johansson, F.: mpmath: a Python library for arbitrary-precision floating-point arithmetic (version 0.17). http://code.google.com/p/mpmath/ (2011). Accessed Dec 2011
  18. 18.
    Kano, P.O., Brio, M., Moloney, J.V.: Application of the Weeks method for the numerical inversion of the Laplace transform to the matrix exponential. Communications in Mathematical Sciences 3(3), 335–372 (2005)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Kuhlman, K.L., Neuman, S.P.: Laplace-transform analytic-element method for transient porous-media flow. J. Eng. Math. 64(2), 113–130 (2009). doi: 10.1007/s10665-008-9251-1 MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Kythe, P.K.: An Introduction to Boundary Element Methods. CRC Press, Boca Raton, FL (1995)zbMATHGoogle Scholar
  21. 21.
    Lanczos, C.: Applied Analysis. Dover, New York (1988)Google Scholar
  22. 22.
    Liggett, J.A., Liu, P.L.: The Boundary Integral Equation Method for Porous Media Flow. Unwin, London, UK (1982)Google Scholar
  23. 23.
    Lyness, J., Giunta, G.: A modification of the Weeks method for numerical inversion of the Laplace transform. Math. Comput. 47(175), 313–322 (1986). doi: 10.2307/2008097 MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Malama, B., Kuhlman, K., Revil, A.: Theory of transient streaming potentials associated with axial-symmetric flow in unconfined aquifers. Geophys. J. Int. 179(2), 990–1003 (2009). doi: 10.1111/j.1365-246X.2009.04336.x CrossRefGoogle Scholar
  25. 25.
    Mishra, P.K., Neuman, S.P.: Improved forward and inverse analyses of saturated-unsaturated flow toward a well in a compressible unconfined aquifer. Water Resour. Res. 46(7), W07508, 16 (2010). doi: 10.1029/2009WR008899 CrossRefGoogle Scholar
  26. 26.
    Morales-Casique, E., Neuman, S.P.: Laplace-transform finite element solution of nonlocal and localized stochastic moment equations of transport. Commun. Comput. Phys. 6(1), 131–161 (2009)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Oliphant, T.E.: Python for scientific computing. Comput. Sci. Eng. 9(3), 10–20 (2007). doi: 10.1109/MCSE.2007.58 CrossRefGoogle Scholar
  28. 28.
    Piessens, R.: A new numerical method for the inversion of the Laplace transform. J. Inst. Math. Appl. 10, 185–192 (1972). doi: 10.1093/imamat/10.2.185 zbMATHCrossRefGoogle Scholar
  29. 29.
    Schapery, R.: Approximate methods of transform inversion for visco-elastic stress analysis. In: Proceedings of the Fourth US National Congress on Applied Mechanics, vol. 2, pp. 1075–1085 (1962)Google Scholar
  30. 30.
    Stehfest, H.: Algorithm 368: numerical inversion of Laplace transforms. Commun. ACM 13(1), 47–49 (1970). doi: 10.1145/361953.361969 CrossRefGoogle Scholar
  31. 31.
    Sternberg, Y.: Flow to wells in the presence of radial discontinuities. Ground Water 7(6), 17–20 (1969). doi: 10.1111/j.1745-6584.1969.tb01666.x CrossRefGoogle Scholar
  32. 32.
    Sudicky, E., McLaren, R.: The Laplace transform Galerkin technique for large-scale simulation of mass transport in discretely fractured porous formations. Water Resour. Res. 28(2), 499–514 (1992). doi: 10.1029/91WR02560 CrossRefGoogle Scholar
  33. 33.
    Talbot, A.: The accurate numerical inversion of Laplace transforms. IMA J. Appl. Math. 23(1), 97 (1979). doi: 10.1093/imamat/23.1.97 MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Weeks, W.: Numerical inversion of Laplace transforms using Laguerre functions. J. ACM 13(3), 419–429 (1966). doi: 10.1145/321341.321351 MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Weideman, J.: Algorithms for parameter selection in the Weeks method for inverting the Laplace transform. SIAM J. Sci. Comput. 21(1), 111–128 (1999). doi: 10.1137/S1064827596312432 MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Widder, D.: The Laplace Transform. Princeton University Press, Princeton, NJ (1941)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Repository Performance DepartmentSandia National LaboratoriesCarlsbadUSA

Personalised recommendations