Numerical Algorithms

, Volume 60, Issue 2, pp 223–239 | Cite as

(1, 1)-q-coherent pairs

  • Francisco Marcellán
  • Natalia C. Pinzón-Cortés
Original Paper


In this paper, we introduce the concept of (1, 1)-q-coherent pair of linear functionals \((\mathcal{U},\mathcal{V})\) as the q-analogue to the generalized coherent pair studied by Delgado and Marcellán in (Methods Appl Anal 11(2):273–266, 2004). This means that their corresponding sequences of monic orthogonal polynomials {Pn(x)}n ≥ 0 and {Rn(x)}n ≥ 0 satisfy
$$ \frac{\left(D_qP_{n+1}\right)(x)}{[n+1]_q} + a_{n}\frac{\left(D_qP_{n}\right)(x)}{[n]_q} = R_{n}(x) + b_{\!n}R_{n-1}(x) \,, \quad\, a_{n}\neq0,\,\, n\geq1, $$
\([n]_q=\frac{q^n-1}{q-1}\), 0 < q < 1. We prove that if a pair of regular linear functionals \((\mathcal{U},\mathcal{V})\) is a (1, 1)-q-coherent pair, then at least one of them must be q-semiclassical of class at most 1, and these functionals are related by an expression \(\sigma(x)\mathcal{U}=\rho(x)\mathcal{V}\) where σ(x) and ρ(x) are polynomials of degrees ≤ 3 and 1, respectively. Finally, the q-classical case is studied.


Linear functionals q-orthogonal polynomials q-coherent pairs 

Mathematics Subject Classifications (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alfaro, M., Marcellán, F., Peña, A., Rezola, M.L.: On linearly related orthogonal polynomials and their functionals. J. Math. Anal. Appl. 287, 307–319 (2003)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Alvarez-Nodarse, R.: Polinomios hipergeométricos clásicos y q-polinomios. (Spanish) [Classical hypergeometric polynomials and q-polynomials]. Monografías del Seminario Matemático “García de Galdeano” [Monographs of the “García Galdeano” Mathematics Seminar], vol. 26. Universidad de Zaragoza (2003)Google Scholar
  3. 3.
    Area, I.: Polinomios Ortogonales de Variable Discreta: Pares Coherentes. Problemas de Conexión. Doctoral Dissertation, Universidad de Vigo, España (in Spanish) (1999)Google Scholar
  4. 4.
    Area, I., Godoy, E., Marcellán, F.: q-coherent pairs and q-orthogonal polynomials. Appl. Math. Comput. 128, 191–216 (2002)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Area, I., Godoy, E., Marcellán, F., Moreno-Balcázar, J.J.: Inner products involving q-differences: the little q-Laguerre–Sobolev polynomials. J. Comput. Appl. Math. 118, 1–22 (2000)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Álvarez-Nodarse, R., Medem, J.C.: q-classical polynomials and the q-Askey and Nikiforov–Uvarov tableaus. J. Comput. Appl. Math. 135, 197–223 (2001)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Atakishiyev, N.M., Rahman, M., Suslov, S.K.: On classical orthogonal polynomials. Constr. Approx. 11, 181–223 (1995)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)MATHGoogle Scholar
  9. 9.
    Delgado, A.M., Marcellán, F.: Companion linear functionals and sobolev inner products: a case study. Methods Appl. Anal. 11(2), 273–266 (2004)Google Scholar
  10. 10.
    Delgado, A.M., Marcellán, F.: On an extension of symmetric coherent pairs of orthogonal polynomials. J. Comput. Appl. Math. 178, 155–168 (2005)MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    Hahn, W.: Über orthogonalpolynome, die q-differenzengleichungen Genügen. Math. Nachr. 2, 4–34 (1949)MathSciNetMATHCrossRefGoogle Scholar
  12. 12.
    Iserles, A., Koch, P.E., Nørsett, S.P., Sanz-Serna, J.M.: On polynomials orthogonal with respect to certain Sobolev inner products. J. Approx. Theory 65, 151–175 (1991)MathSciNetMATHCrossRefGoogle Scholar
  13. 13.
    Koornwinder, T.H.: Compact quantum groups and qq-special functions. In: Representations of Lie groups and quantum groups (Trento, 1993), Pitman Res. Notes Math. Ser., vol. 311, pp. 46–128. Longman Sci. Tech., Harlow (1994)Google Scholar
  14. 14.
    Marcellán, F., Medem, J.C.: Q-classical orthogonal polynomials: a very classical approach. Electron. Trans. Numer. Anal. 9, 112–127 (1999)MathSciNetMATHGoogle Scholar
  15. 15.
    Marcellán, F., Petronilho, J.: Orthogonal polynomials and coherent pairs: the classical case. Indag. Math. (N. S.) 6, 287–307 (1995)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Maroni, P.: Sur quelques spaces de distributions qui sont des formes linéaires sur l’ espace vectoriel des polynômes. In: Brezinski, C., et al. (eds.) Polynômes Orthogonaux et Applications, Symposium Laguerre, Bar-le-Duc (1984), Lect. Notes in Math. vol. 1171, pp. 184–194. Springer Verlag, Berlin (1985)CrossRefGoogle Scholar
  17. 17.
    Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et al. (eds.) Orthogonal Polynomials and Their Applications. IMACS Ann. Comput. Appl. Math. 9, 95–130 (1991)Google Scholar
  18. 18.
    Medem, J.C.: Polinomios ortogonales q-semiclásicos. Doctoral Dissertation, Universidad Politécnica de Madrid, España (in Spanish) (1996)Google Scholar
  19. 19.
    Medem, J.C., Álvarez-Nodarse, R., Marcellán, F.: On the q-polynomials: a distributional study. J. Comput. Appl. Math. 135, 157–196 (2001)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Meijer, H.G.: Determination of all coherent pairs. J. Approx. Theory 89, 321–343 (1997)MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Francisco Marcellán
    • 1
  • Natalia C. Pinzón-Cortés
    • 1
  1. 1.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations