Numerical Algorithms

, Volume 61, Issue 1, pp 163–186 | Cite as

A new method for estimating derivatives based on a distribution approach

  • Nathalie VerdièreEmail author
  • Lilianne Denis-Vidal
  • Ghislaine Joly-Blanchard
Original Paper


In many applications, the estimation of derivatives has to be done from noisy measured signal. In this paper, an original method based on a distribution approach is presented. Its interest is to report the derivatives on infinitely differentiable functions. Thus, the estimation of the derivatives is done only from the signal. Besides, this method gives some explicit formulae leading to fast calculus. For all these reasons, it is an efficient method in the case of noisy signals as it will be confirmed in several examples.


Derivatives estimation Distributions Test Functions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Craven, P., Wahba, G.: Smoothing noisy data with spline functions: Estimationthe correct degree of smoothing by the method of generalized cross-validation. Numer. Math. 31(4), 377–403 (1979)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Ditkowski, A., Bhandari, A., Sheldon, B.W.: Computing derivatives of noisy signals using orthogonal functions expansions. J. Sci. Comput. 36, 333–349 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    De Boor, C.: A practical Guide to Splines. New York, Springer (1978)zbMATHCrossRefGoogle Scholar
  4. 4.
    Diop, S, Grizzle, J.W., Morral, P.E., Stefanoupoulou, A.G.: Interpolation and numerical differentiation for observer design. In: Proc. Amer. Contr. Conf., pp. 1329–1333. Evanston, IL (1993)Google Scholar
  5. 5.
    Ibrir, S., Diop, S.: A numerical procedure for filtering and efficient high-order signal differentiation. Int. J. Appl. Math. Comput. Sci. 14(2), 201–208 (2004)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fliess, M., Mboup, M., Mounier, H., Sira-Ramirez, H.: Questioning some paradigms of signal processing via concret examples. In: Proc. Summer School: Fast Estimation Method in Automatic Control and Signal Processing, Paris (2005)Google Scholar
  7. 7.
    Gauthier, J.P., Hammouri, H., Othman, S.: A simple observer for nonlinear systems: application to bioreactors. IEEE Trans. Automat. Contr. 37(6), 675–880 (1992)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Liu, D., Olivier, G.,Wilfrid, P.: Error analysis of Jacobi derivative estimators for noisy signals. Numer. Algor. 58(1), 53–83 (2011)zbMATHCrossRefGoogle Scholar
  9. 9.
    Mboup, M., Join, C., Fliess, M.: Numerical differentiation with annihilator in noisy environment. Numer. Algor. 50(4), 439–467 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Rudin, W.: Functional Analysis. McGraw-Hill (1979)Google Scholar
  11. 11.
    Valiron, G.: Sur les fonctions analytiques d’une variable réelle. Nouvelles Annales de Mathématiques 5ième Série, tome1, pp. 321–329 (1922)Google Scholar
  12. 12.
    Verdière, N., Denis-Vidal, L., Joly-Blanchard, G., Domurado, D.: Identifiability and estimation of pharmacokinetic parameters of ligands of macrophage mannose receptor. Int. J. Appl. Math. Comput. Sci. 15(4), 101–110 (2005)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Nathalie Verdière
    • 1
    Email author
  • Lilianne Denis-Vidal
    • 2
  • Ghislaine Joly-Blanchard
    • 3
  1. 1.University of Le Havre, LMAHLe Havre CedexFrance
  2. 2.University of Sciences and Technologies of LilleVilleneuve d’AscqFrance
  3. 3.University of Technology of CompiègneCompiègneFrance

Personalised recommendations