Numerical Algorithms

, Volume 60, Issue 1, pp 51–73 | Cite as

Asymptotic properties of Laguerre–Sobolev type orthogonal polynomials

  • Herbert Dueñas
  • Edmundo J. Huertas
  • Francisco Marcellán
Original Paper


In this contribution we consider the asymptotic behavior of sequences of monic polynomials orthogonal with respect to a Sobolev-type inner product
$$ \left\langle p,q\right\rangle _{S}=\int_{0}^{\infty }p(x)q(x)x^{\alpha }e^{-x}dx+Np^{\prime }(a)q^{\prime }(a),\alpha >-1 $$
where N ∈ ℝ + , and a ∈ ℝ − . We study the outer relative asymptotics of these polynomials with respect to the standard Laguerre polynomials. The analogue of the Mehler–Heine formula as well as a Plancherel–Rotach formula for the rescaled polynomials are given. The behavior of their zeros is also analyzed in terms of their dependence on N.


Orthogonal polynomials Laguerre polynomials Laguerre–Sobolev-type orthogonal polynomials Laguerre polynomials Bessel functions Rescaled polynomials Asymptotics Plancherel–Rotach type formula Outer relative asymptotics Mehler–Heine type formula 

Mathematics Subject Classification (2010)



Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Bracciali, C.F., Dimitrov, D.K., Sri Ranga, A.: Chain sequences and symetric generalized orthogonal polynomials. J. Comput. Appl. Math. 143, 95–106 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)zbMATHGoogle Scholar
  5. 5.
    Dimitrov, D.K., Marcellán, F., Rafaeli, F.R.: Monotonicity of zeros of Laguerre–Sobolev-type orthogonal polynomials. J. Math. Anal. Appl. 368, 80–89 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Dimitrov, D.K., Mello, M.V., Rafaeli, F.R.: Monotonicity of zeros of Jacobi–Sobolev-type orthogonal polynomials. Appl. Numer. Math. 60, 263–276 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Dueñas, H., Huertas, E.J., Marcellán, F.: Analytic properties of Laguerre-type orthogonal polynomials. Integral Transforms Spec. Funct. 22, 107–122 (2010)CrossRefGoogle Scholar
  8. 8.
    Dueñas, H., Marcellán, F.: The Laguerre-Sobolev-type orthogonal polynomials. J. Approx. Theory 162, 421–440 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Dueñas, H., Marcellán, F.: The Laguerre–Sobolev-type orthogonal polynomials. Holonomic equation and electrostatic interpretation. Rocky Mount. J. Math. 41, 95–131 (2011)zbMATHCrossRefGoogle Scholar
  10. 10.
    Fejzullahu, B.Xh., Zejnullahu, R.Xh.: Orthogonal polynomials with respect to the Laguerre measure perturbed by the canonical transformations. Integral Transforms Spec. Funct. 17, 569–580 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huertas, E.J., Marcellán, F., Rafaeli, F.R.: Zeros of orthogonal polynomials generated by canonical perturbations of measures (submitted)Google Scholar
  12. 12.
    Lebedev, N.N.: Special Functions and their Applications. Dover Publications, New York (1972)zbMATHGoogle Scholar
  13. 13.
    Marcellán, F., Branquinho, A., Petronilho, J.C.: Classical orthogonal polynomials: a functional approach. Acta Appl. Math. 34, 283–303 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Marcellán, F., Pérez, T.E., Piñar, M.A.: On zeros of Sobolev-type orthogonal polynomials. Rend. Mat. Appl. (7) 12(2), 455–473 (1992)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Marcellán, F., Ronveaux, A.: On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Math. N. S. 1, 451–464 (1990)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: An Unified Approach. Birkhauser, Basel (1988)zbMATHGoogle Scholar
  17. 17.
    Rafaeli, F.R., Marcellán, F.: Monotonicity and asymptotics of zeros of Laguerre–Sobolev-type orthogonal polynomials of higher derivatives. Proc. Amer. Math. Soc. 139, 3929–3936 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Szegő, G.: Orthogonal polynomials, vol. 23, 4th edn. Amer. Math. Soc. Colloq. Publ. Series, Amer. Math. Soc., Providence, RI (1975)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Herbert Dueñas
    • 1
  • Edmundo J. Huertas
    • 2
  • Francisco Marcellán
    • 2
  1. 1.Departamento de Matemáticas Ciudad UniversitariaUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations