Numerical Algorithms

, Volume 60, Issue 1, pp 51–73 | Cite as

Asymptotic properties of Laguerre–Sobolev type orthogonal polynomials

  • Herbert Dueñas
  • Edmundo J. Huertas
  • Francisco Marcellán
Original Paper

Abstract

In this contribution we consider the asymptotic behavior of sequences of monic polynomials orthogonal with respect to a Sobolev-type inner product
$$ \left\langle p,q\right\rangle _{S}=\int_{0}^{\infty }p(x)q(x)x^{\alpha }e^{-x}dx+Np^{\prime }(a)q^{\prime }(a),\alpha >-1 $$
where N ∈ ℝ + , and a ∈ ℝ − . We study the outer relative asymptotics of these polynomials with respect to the standard Laguerre polynomials. The analogue of the Mehler–Heine formula as well as a Plancherel–Rotach formula for the rescaled polynomials are given. The behavior of their zeros is also analyzed in terms of their dependence on N.

Keywords

Orthogonal polynomials Laguerre polynomials Laguerre–Sobolev-type orthogonal polynomials Laguerre polynomials Bessel functions Rescaled polynomials Asymptotics Plancherel–Rotach type formula Outer relative asymptotics Mehler–Heine type formula 

Mathematics Subject Classification (2010)

33C47 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Andrews, G.E., Askey, R., Roy, R.: Special Functions, Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)Google Scholar
  2. 2.
    Bracciali, C.F., Dimitrov, D.K., Sri Ranga, A.: Chain sequences and symetric generalized orthogonal polynomials. J. Comput. Appl. Math. 143, 95–106 (2002)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Brezinski, C., Driver, K.A., Redivo-Zaglia, M.: Quasi-orthogonality with applications to some families of classical orthogonal polynomials. Appl. Numer. Math. 48, 157–168 (2004)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)MATHGoogle Scholar
  5. 5.
    Dimitrov, D.K., Marcellán, F., Rafaeli, F.R.: Monotonicity of zeros of Laguerre–Sobolev-type orthogonal polynomials. J. Math. Anal. Appl. 368, 80–89 (2010)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Dimitrov, D.K., Mello, M.V., Rafaeli, F.R.: Monotonicity of zeros of Jacobi–Sobolev-type orthogonal polynomials. Appl. Numer. Math. 60, 263–276 (2010)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Dueñas, H., Huertas, E.J., Marcellán, F.: Analytic properties of Laguerre-type orthogonal polynomials. Integral Transforms Spec. Funct. 22, 107–122 (2010)CrossRefGoogle Scholar
  8. 8.
    Dueñas, H., Marcellán, F.: The Laguerre-Sobolev-type orthogonal polynomials. J. Approx. Theory 162, 421–440 (2010)MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    Dueñas, H., Marcellán, F.: The Laguerre–Sobolev-type orthogonal polynomials. Holonomic equation and electrostatic interpretation. Rocky Mount. J. Math. 41, 95–131 (2011)MATHCrossRefGoogle Scholar
  10. 10.
    Fejzullahu, B.Xh., Zejnullahu, R.Xh.: Orthogonal polynomials with respect to the Laguerre measure perturbed by the canonical transformations. Integral Transforms Spec. Funct. 17, 569–580 (2010)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Huertas, E.J., Marcellán, F., Rafaeli, F.R.: Zeros of orthogonal polynomials generated by canonical perturbations of measures (submitted)Google Scholar
  12. 12.
    Lebedev, N.N.: Special Functions and their Applications. Dover Publications, New York (1972)MATHGoogle Scholar
  13. 13.
    Marcellán, F., Branquinho, A., Petronilho, J.C.: Classical orthogonal polynomials: a functional approach. Acta Appl. Math. 34, 283–303 (1994)MathSciNetMATHCrossRefGoogle Scholar
  14. 14.
    Marcellán, F., Pérez, T.E., Piñar, M.A.: On zeros of Sobolev-type orthogonal polynomials. Rend. Mat. Appl. (7) 12(2), 455–473 (1992)MathSciNetMATHGoogle Scholar
  15. 15.
    Marcellán, F., Ronveaux, A.: On a class of polynomials orthogonal with respect to a discrete Sobolev inner product. Indag. Math. N. S. 1, 451–464 (1990)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Nikiforov, A.F., Uvarov, V.B.: Special Functions of Mathematical Physics: An Unified Approach. Birkhauser, Basel (1988)MATHGoogle Scholar
  17. 17.
    Rafaeli, F.R., Marcellán, F.: Monotonicity and asymptotics of zeros of Laguerre–Sobolev-type orthogonal polynomials of higher derivatives. Proc. Amer. Math. Soc. 139, 3929–3936 (2011)MathSciNetMATHCrossRefGoogle Scholar
  18. 18.
    Szegő, G.: Orthogonal polynomials, vol. 23, 4th edn. Amer. Math. Soc. Colloq. Publ. Series, Amer. Math. Soc., Providence, RI (1975)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  • Herbert Dueñas
    • 1
  • Edmundo J. Huertas
    • 2
  • Francisco Marcellán
    • 2
  1. 1.Departamento de Matemáticas Ciudad UniversitariaUniversidad Nacional de ColombiaBogotáColombia
  2. 2.Departamento de MatemáticasUniversidad Carlos III de MadridLeganésSpain

Personalised recommendations