Numerical Algorithms

, Volume 59, Issue 2, pp 325–331 | Cite as

Algorithms for range restricted iterative methods for linear discrete ill-posed problems

Original Paper

Abstract

Range restricted iterative methods based on the Arnoldi process are attractive for the solution of large nonsymmetric linear discrete ill-posed problems with error-contaminated data (right-hand side). Several derivations of this type of iterative methods are compared in Neuman et al. (Linear Algebra Appl. in press). We describe MATLAB codes for the best of these implementations. MATLAB codes for range restricted iterative methods for symmetric linear discrete ill-posed problems are also presented.

Keywords

Linear discrete ill-posed problem Iterative method Truncated iteration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)CrossRefMATHMathSciNetGoogle Scholar
  2. 2.
    Calvetti, D., Lewis, B., Reichel, L.: On the choice of subspace for iterative methods for linear discrete ill-posed problems. Int. J. Appl. Math. Comput. Sci. 11, 1069–1092 (2001)MATHMathSciNetGoogle Scholar
  3. 3.
    Calvetti, D., Lewis, B., Reichel, L.: On the regularizing properties of the GMRES method. Numer. Math. 91, 605–625 (2002)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Delves, L.M., Mohamed, J.L.: Computational Methods for Integral Equations, p. 310. Cambridge University Press (1985)Google Scholar
  5. 5.
    Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Kluwer, Dordrecht (1996)CrossRefMATHGoogle Scholar
  6. 6.
    Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)CrossRefGoogle Scholar
  7. 7.
    Hansen, P.C.: Regularization tools version 4.0 for Matlab 7.3. Numer. Algorithms 46, 189–194 (2007)CrossRefMATHGoogle Scholar
  8. 8.
    Hansen, P.C., Jensen, T.K.: Noise propagation in regularizing iterations for image deblurring. Electron. Trans. Numer. Anal. 31, 204–220 (2008)MATHMathSciNetGoogle Scholar
  9. 9.
    Louis, A.K., Maass, P.: A mollifier method for linear operator equations of the first kind. Inverse Problems 6, 427–440 (1990)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Neuman, A., Reichel, L., Sadok, H.: Implementations of range restricted iterative methods for linear discrete ill-posed problems. Linear Algebra Appl. (in press)Google Scholar
  11. 11.
    Phillips, D.L.: A technique for the numerical solution of certain integral equations of the first kind. J. ACM 9, 84–97 (1962)CrossRefMATHGoogle Scholar
  12. 12.
    Reichel, L., Ye, Q.: Breakdown-free GMRES for singular systems. SIAM J. Matrix Anal. Appl. 26, 1001–1021 (2005)CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd ed. SIAM, Philadelphia (2003)Google Scholar
  14. 14.
    Shaw, Jr., C.B.: Improvements of the resolution of an instrument by numerical solution of an integral equation. J. Math. Anal. Appl. 37, 83–112 (1972)CrossRefMATHMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Department of Mathematical SciencesKent State UniversityKentUSA
  2. 2.Laboratoire de Mathématiques Pures et AppliquéesUniversité du LittoralCalais cedexFrance

Personalised recommendations