Advertisement

Numerical Algorithms

, Volume 58, Issue 4, pp 529–543 | Cite as

Stability verification for monotone systems using homotopy algorithms

  • Björn S. Rüffer
  • Fabian R. Wirth
Original Paper

Abstract

A monotone self-mapping of the nonnegative orthant induces a monotone discrete-time dynamical system which evolves on the same orthant. If with respect to this system the origin is attractive then there must exist points whose image under the monotone map is strictly smaller than the original point, in the component-wise partial ordering. Here it is shown how such points can be found numerically, leading to a recipe to compute order intervals that are contained in the region of attraction and where the monotone map acts essentially as a contraction. An important application is the numerical verification of so-called generalized small-gain conditions that appear in the stability theory of large-scale systems.

Keywords

Monotone systems Stability theory Homotopy algorithms 

Mathematics Subject Classifications (2010)

93C55 47H07 65H20 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aeyels, D., De Leenheer, P.: Extension of the Perron–Frobenius theorem to homogeneous systems. SIAM J. Control Optim. 41(2), 563–582 (electronic) (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Allgower, E., Georg, K.: Simplicial and continuation methods for approximating fixed points and solutions to systems of equations. SIAM Rev. 22, 28–85 (1980)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Allgower, E.L., Georg, K.: Numerical continuation methods. In: Springer Series in Computational Mathematics, vol. 13. Springer, Berlin (1990)Google Scholar
  4. 4.
    Allgower, E.L., Georg, K.: Numerical path following. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. V, pp. 3–207. North-Holland, Amsterdam (1997)Google Scholar
  5. 5.
    Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Bertini: Software for Numerical Algebraic Geometry (2006). Available at http://www.nd.edu/~sommese/bertini
  6. 6.
    Eaves, B.C.: Homotopies for computation of fixed points. Math. Program. 3, 1–22 (1972)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Feoktistova, V., Matveev, A.: Dynamic interactive stabilization of the switching Kumar–Seidman system. Vestnik St. Petersburg Univ. Math. 42(3), 226–234 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Gao, K., Lin, Y.: On equivalent notions of input-to-state stability for nonlinear discrete time systems. In: Proc. of the IASTED Int. Conf. on Control and Applications, pp. 81–87 (2000)Google Scholar
  9. 9.
    Jiang, Z.-P., Wang, Y.: Input-to-state stability for discrete-time nonlinear systems. Automatica J. IFAC 37(6), 857–869 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Karafyllis, I., Jiang, Z.-P.: A vector small-gain theorem for general nonlinear control systems. arXiv:0904.0755v1 [math.OC] (2009)
  11. 11.
    Knaster, B., Kuratowski, C., Mazurkiewicz, S.: Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe. Fundamenta 14, 132–137 (1929)zbMATHGoogle Scholar
  12. 12.
    Krause, U.: Concave Perron–Frobenius theory and applications. Nonlinear Anal. 47(3), 1457–1466 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lassonde, M.: Sur le principe KKM. C.R. Acad. Sci. Paris Sér. I Math. 310(7), 573–576 (1990)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Lee, T.L., Li, T.Y., Tsai, C.H.: HOM4PS-2.0: a software package for solving polynomial systems by the polyhedral homotopy continuation method. Computing 83(2–3), 109–133 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Raimondo, D.M., Magni, L., Scattolini, R.: Decentralized MPC of nonlinear systems: an input-to-state stability approach. Int. J. Robust Nonlinear Control 17(17), 1651–1667 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Rüffer, B.S.: Monotone inequalities, dynamical systems, and paths in the positive orthant of Euclidean n-space. Positivity 14(2), 257–283 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Rüffer, B.S.: Small-gain conditions and the comparison principle. IEEE Trans. Automat. Contr. 55(7), 1732–1736 (2010)CrossRefGoogle Scholar
  18. 18.
    Rüffer, B.S., Dashkovskiy, S.N.: Local ISS of large-scale interconnections and estimates for stability regions. Syst. Control Lett. 59(3–4), 241–247 (2010)zbMATHGoogle Scholar
  19. 19.
    Tanner, H.G., Pappas, G.J., Kumar, V.: Leader-to-formation stability. IEEE Trans. Robot. Autom. 20(3), 443–455 (2004)CrossRefGoogle Scholar
  20. 20.
    Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. 25, 251–276 (1999)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2011

Authors and Affiliations

  1. 1.Institut für Elektrotechnik und InformationstechnikUniversität PaderbornPaderbornGermany
  2. 2.Institut für MathematikUniversität WürzburgWürzburgGermany

Personalised recommendations