Advertisement

Numerical Algorithms

, Volume 57, Issue 4, pp 425–439 | Cite as

Multiplicative Adams Bashforth–Moulton methods

  • Emine Misirli
  • Yusuf Gurefe
Original Paper

Abstract

The multiplicative version of Adams Bashforth–Moulton algorithms for the numerical solution of multiplicative differential equations is proposed. Truncation error estimation for these numerical algorithms is discussed. A specific problem is solved by methods defined in multiplicative sense. The stability properties of these methods are analyzed by using the standart test equation.

Keywords

Multiplicative calculus Backward division operator Truncation error estimation Stability analysis Adams methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bashirov, A.E., Misirli Kurpinar, E., Ozyapici, A.: Multiplicative calculus and its applications. J. Math. Anal. Appl. 337, 36–48 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  2. 2.
    Aniszewska, D.: Multiplicative runge-kutta methods. Nonlinear Dyn. 50, 265–272 (2007)CrossRefzbMATHGoogle Scholar
  3. 3.
    Grossman, M.: Bigeometric Calculus, a System with a Scale-free Derivative. Archimedes Foundation, Rockport (1983)Google Scholar
  4. 4.
    Grossman, M., Katz, R.: Non-Newtonian Calculus. Lee Press, Pigeon Cove, Massachusats (1972)Google Scholar
  5. 5.
    Riza, M., Ozyapici, A., Misirli, E.: Multiplicative Finite Difference Methods. Q. Appl. Math. 67, 745–754 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Suli, E., Mayers, D.F.: An Introduction to Numerical Analysis. Cambridge University Press, Cambridge (2003)Google Scholar
  7. 7.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations. Wiley, Chichester (2003)CrossRefzbMATHGoogle Scholar
  8. 8.
    Misirli, E., Ozyapici, A.: Exponential approximations on multiplicative calculus. Proc. Jangjeon Math. Soc. 12, 227–236 (2009)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Dahlquist, G.G.: A special stability problem for linear multistep methods. BIT 3, 27–43 (1963)CrossRefMathSciNetzbMATHGoogle Scholar
  10. 10.
    Ehle, B.L.: On Pade approximations to the exponential function and a-stable methods for the numerical solution of initial value problems. Report 2010, University of Waterloo (1969)Google Scholar
  11. 11.
    Volterra, V., Hostinsky, B.: Operations Infinitesimales Lineares. Herman, Paris (1938).Google Scholar
  12. 12.
    Aniszewska, D., Rybaczuk, M.: Lyapunov type stability and Lyapunov exponent for exemplary multiplicative dynamical systems. Nonlinear Dyn. 54, 345–354 (2008)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Rybaczuk, M., Stoppel, P.: The fractal growth of fatigue defects in materials. Int. J. Fract. 103, 71–94 (2000)CrossRefGoogle Scholar
  14. 14.
    Nottale, L.: Scale, relativity and fractal spacetime: applications to quantum physics, cosmology and chaotic systems. Chaos Soliton Fract. 7, 877–938 (1996)CrossRefMathSciNetzbMATHGoogle Scholar
  15. 15.
    DAmbrosio, R., Ferro, M., Jackiewicz, Z., Paternoster, B.: Two-step almost collocation methods for ordinary differential equations. Numer. Algorithms 54, 169–193 (2010)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Khaliq, A.Q.M., Twizell, E.H.: Stability regions for one-step multiderivative methods in PECE mode with application to stiff systems. Int. J. Comput. Math. 17, 323–338 (1985)CrossRefzbMATHGoogle Scholar
  17. 17.
    Prothero, A., Robinson, A.: On the stability and the accuracy of one-step methods for solving stiff systems of ordinary differential equations. Math. Comput. 28, 145–162 (1974)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Lambert, J.D.: Computational Methods in Ordinary Differential Equations, xv+278 pp. Wiley, Chichester (1973)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of MathematicsEge UniversityIzmirTurkey

Personalised recommendations