Numerical Algorithms

, Volume 56, Issue 3, pp 455–479 | Cite as

Rational approximation to the Fermi–Dirac function with applications in density functional theory

Original Paper

Abstract

We are interested in computing the Fermi–Dirac matrix function in which the matrix argument is the Hamiltonian matrix arising from density functional theory (DFT) applications. More precisely, we are really interested in the diagonal of this matrix function. We discuss rational approximation methods to the problem, specifically the rational Chebyshev approximation and the continued fraction representation. These schemes are further decomposed into their partial fraction expansions, leading ultimately to computing the diagonal of the inverse of a shifted matrix over a series of shifts. We describe Lanczos and sparse direct methods to address these systems. Each approach has advantages and disadvantages that are illustrated with experiments.

Keywords

Fermi–Dirac Diagonal of matrix inverse Electronic structure calculations Density functional theory Rational Chebyshev Continued fraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baer, R., Head-Gordon, M.: Chebyshev expansion methods for electronic structure calculations on large molecular systems. J. Chem. Phys. 107, 10003–10013 (1997)CrossRefGoogle Scholar
  2. 2.
    Bekas, C., Kokiopoulou, E., Saad, Y.: An estimator for the diagonal of a matrix. Appl. Numer. Math. 57, 1214–1229 (2007)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Bekas, C., Kokiopoulou, E., Saad, Y.: Computation of large invariant subspaces using polynomial filtered Lanczos iterations with applications in density functional theory. SIAM J. Matrix Anal. Appl. 30(1), 397–418 (2008)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bekas, C., Saad, Y., Tiago, M.L., Chelikowsky, J.R.: Computing charge densities with partially reorthogonalized Lanczos. Comput. Phys. Commun. 171(3), 175–186 (2005)CrossRefGoogle Scholar
  5. 5.
    Benzi, M., Razouk, N.: Decay bounds and O(N) algorithms for approximating functions of sparse matrices. ETNA 28, 16–39 (2007)MATHMathSciNetGoogle Scholar
  6. 6.
    Carpenter, A.J., Ruttan, A., Varga, R.S.: Extended numerical computations on the 1/9 conjecture in rational approximation theory. In: Lecture Notes in Math., vol. 1105, pp. 383–411. Springer, Berlin (1984)Google Scholar
  7. 7.
    Cody, W.J., Meinardus, G., Varga, R.S.: Chebyshev rational approximation to \(\exp(-x)\) in [0, + ∞ ) and applications to heat conduction problems. J. Approx. Theory 2, 50–65 (1969)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cullum, J., Willoughby, R.A.: Lanczos Algorithms for Large Symmetric Eigenvalue Computations, vols. 1 and 2. Birkhäuser, Boston (1985)Google Scholar
  9. 9.
    Duff, I.S., Erisman, A.M., Reid, J.K.: Direct Method for Sparse Matrices. Clarendon Press, Oxford (1989)Google Scholar
  10. 10.
    Filipponi, A.: Continued fraction expansion for the X-ray absorption cross section. J. Phys.: Condens. Matter 3, 6489–6507 (1991)CrossRefGoogle Scholar
  11. 11.
    Goedecker, S.: Linear scaling electronic structure methods Rev. Mod. Phys. 71, 1085–1123 (1999)CrossRefGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore, MD (1996)MATHGoogle Scholar
  13. 13.
    Goncar, A.A., Rakhmanov, E.A.: On the rate of rational approximation of analytic functions. In: Lecture Notes in Math., vol. 1354, pp. 25–42. Springer, Berlin, Heidelberg (1988)Google Scholar
  14. 14.
    Hochbruck, M., Lubich, C., Selhofer, H.: Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19, 1552–1574 (1998)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Jay, L.O., Kim, H., Saad, Y., Chelikowsky, J.R.: Electronic structure calculations using plane wave codes without diagonalization. Comput. Phys. Commun. 118, 21–30 (1999)MATHCrossRefGoogle Scholar
  16. 16.
    Kronik, L., Makmal, A., Tiago, M., Alemany, M.M.G., Huang, X., Saad, Y., Chelikowsky, J.R.: PARSEC—The pseudopotential algorithm for real-space electronic structure calculations: recent advances and novel applications to nanostructures. Phys. Stat. Solidi B (Feature Article) 243, 1063–1079 (2006). http://parsec.ices.utexas.edu CrossRefGoogle Scholar
  17. 17.
    Lanczos, C.: An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res. Natl. Bur. Stand. 45, 255–282 (1950)MathSciNetGoogle Scholar
  18. 18.
    Larsen, R.M.: Efficient algorithms for Helioseismic inversion. Ph.D. thesis, Dept. Computer Science, University of Aarhus, DK-8000 Aarhus C, Denmark (1998)Google Scholar
  19. 19.
    Nour-Omid, B.: Applications of the Lanczos algorithm. Comput. Phys. Commun. 53, 157–168 (1989)MATHCrossRefGoogle Scholar
  20. 20.
    Nour-Omid, B., Clogh, R.W.: Dynamic analysis of structures using Lanczos coordinates. Earthquake Eng. Struct. Dyn. 12, 565–577 (1984)CrossRefGoogle Scholar
  21. 21.
    Ozaki, T.: Continued fraction representation of the Fermi–Dirac function for large-scale electronic structure calculations. Phys. Rev. B 75, 035123(9) (2007)CrossRefGoogle Scholar
  22. 22.
    Paige, C.C.: The computation of eigenvalues and eigenvectors of very large sparse matrices. Ph.D. thesis, London University, Institute of Computer Science, London, England (1971)Google Scholar
  23. 23.
    Parlett, B.N.: A new look a the Lanczos algorithm for solving symmetric systems of linear equations. Linear Algebra Appl. 29, 323–346 (1980)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Haydock, V.H.R., Kelly, M.J.: Electronic structure based on the local atomic environment for tight-binding bands: II. J. Phys.: Solid State Phys. 8, 2591–2605 (1975)CrossRefGoogle Scholar
  25. 25.
    Saad, Y.: SPARSKIT: a basic tool kit for sparse matrix computations. Technical Report RIACS-90-20, Research Institute for Advanced Computer Science, NASA Ames Research Center, Moffett Field, CA (1990)Google Scholar
  26. 26.
    Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator. SIAM J. Numer. Anal. 29, 209–228 (1992)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Saad, Y.: Numerical Methods for Large Eigenvalue Problems. Halstead Press, New York (1992)MATHGoogle Scholar
  28. 28.
    Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM, Philadelphia, PA (2003)MATHCrossRefGoogle Scholar
  29. 29.
    Sidje, R.B., Stewart, W.J.: A numerical study of large sparse matrix exponentials arising in Markov chains. Comput. Stat. Data Anal. 29(3), 345–368 (1999)MATHCrossRefGoogle Scholar
  30. 30.
    Sidje, R.B.: EXPOKIT: a software package for computing matrix exponentials. ACM Trans. Math. Softw. 24(1), 130–156 (1998). http://www.expokit.org MATHCrossRefGoogle Scholar
  31. 31.
    Simon, H.D.: The Lanczos algorithm with partial reorthogonalization. Math. Comput. 42(165), 115–142 (1984)MATHCrossRefGoogle Scholar
  32. 32.
    Trefethen, L.N.: Rational Chebyshev approximation on the unit disk. Numer. Math. 37(2), 297–320 (1981)MATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Trefethen, L.N., Gutknecht, M.H.: The Carathéodory–Féjer method for real rational approximation. SIAM J. Numer. Anal. 20(2), 420–436 (1983)MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Varga, R.S.: Scientific computation on mathematical problems and conjectures. In: CBMS-NSF, Regional Conference Series in Applied Mathematics, vol. 60. SIAM, Philadelphia (1990)Google Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of MathematicsThe University of AlabamaTuscaloosaUSA
  2. 2.Computer Science & EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations