Advertisement

Numerical Algorithms

, Volume 55, Issue 4, pp 503–528 | Cite as

A convergence analysis for directional two-step Newton methods

  • Ioannis K. ArgyrosEmail author
  • Saïd Hilout
Original Paper

Abstract

A semilocal convergence analysis for directional two-step Newton methods in a Hilbert space setting is provided in this study. Two different techniques are used to generate the sufficient convergence results, as well as the corresponding error bounds. The first technique uses our new idea of recurrent functions, whereas the second uses recurrent sequences. We also compare the results of the two techniques.

Keywords

Directional two-step Newton method Hilbert space Nonlinear equation Lipschitz/center-Lipschitz condition Recurrent functions Recurrent sequences Newton–Kantorovich-type hypotheses 

AMS Subject Classifications

65H05 65H10 49M15 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Argyros, I.K.: A unified approach for constructing fast two-step Newton-like methods. Monatsh. Math. 119, 1–22 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Argyros, I.K.: A convergence analysis of Newton-like methods for singular equations using outer or generalized inverses. Appl. Math. (Warsaw) 32, 37–49 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Argyros, I.K.: A unifying local–semilocal convergence analysis and applications for two-point Newton-like methods in Banach space. J. Math. Anal. Appl. 298, 374–397 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Argyros, I.K.: Computational theory of iterative methods. In: Chui, C.K., Wuytack, L. (eds.) Series: Studies in Computational Mathematics, 15. Elsevier, New York (2007)Google Scholar
  5. 5.
    Argyros, I.K.: A semilocal convergence analysis for directional Newton methods. Math. Comput. A.M.S. (2010, in press)Google Scholar
  6. 6.
    Argyros, I.K., Hilout, S.: Efficient Methods for Solving Equations and Variational Inequalities. Polimetrica, Milan (2009)Google Scholar
  7. 7.
    Argyros, I.K., Hilout, S.: Enclosing roots of polynomial equations and their applications to iterative processes. Surveys Math. Appl. 4, 119–132 (2009)zbMATHMathSciNetGoogle Scholar
  8. 8.
    Ben-Israel, A., Levin, Y.: Maple programs for directional Newton methods. Available at ftp://rutcor.rutgers.edu/pub/bisrael/Newton-Dir.mws
  9. 9.
    Levin, Y., Ben-Israel, A.: Directional Newton methods in n variables. Math Comput A.M.S. 237, 251–262 (2002)MathSciNetGoogle Scholar
  10. 10.
    Ezquerro, J.A., Hernández, M.A.: Recurrence relations for Chebyshev-type methods. Appl. Math. Optim. 41, 227–236 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Ezquerro, J.A., Hernández, M.A.: New iterations of R-order four with reduced computational cost. BIT Numer. Math. 49, 325–342 (2009)zbMATHCrossRefGoogle Scholar
  12. 12.
    Hernández, M.A., Rubio, M.J.: Recurrence relations for the super-Halley method. Comput. Math. Appl. 36, 1–8 (1998)zbMATHGoogle Scholar
  13. 13.
    Ortega, J.M., Rheinboldt, W.C.: Iterative Solution of Nonlinear Equations in Several Variables. Academic, New York (1970)zbMATHGoogle Scholar
  14. 14.
    Pereyra, V.: Iterative methods for solving nonlinear least square problems. SIAM J. Numer. Anal. 4, 27–36 (1967)zbMATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Polyak, B.T.: Introduction to optimization. Translated from the Russian. With a foreword by D.P. Bertsekas. Translations Series in Mathematics and Engineering. Optimization Software, Inc., Publications Division, New York (1987)Google Scholar
  16. 16.
    Ralston, A., Rabinowitz, P.: A First Course in Numerical Analysis, 2nd edn. McGraw-Hill, New York (1978)zbMATHGoogle Scholar
  17. 17.
    Stoer, J., Bulirsch, K.: Introduction to Numerical Analysis. Springer, Berlin (1976)Google Scholar
  18. 18.
    Walker, H.F., Watson, L.T.: Least-change Secant update methods. SIAM J. Numer. Anal. 27, 1227–1262 (1990)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2010

Authors and Affiliations

  1. 1.Department of Mathematics SciencesCameron UniversityLawtonUSA
  2. 2.Laboratoire de Mathématiques et ApplicationsPoitiers UniversityFuturoscope Chasseneuil CedexFrance

Personalised recommendations