Skip to main content
Log in

On new iterative method for solving systems of nonlinear equations

  • Original Paper
  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

Solving systems of nonlinear equations is a relatively complicated problem for which a number of different approaches have been proposed. In this paper, we employ the Homotopy Analysis Method (HAM) to derive a family of iterative methods for solving systems of nonlinear algebraic equations. Our approach yields second and third order iterative methods which are more efficient than their classical counterparts such as Newton’s, Chebychev’s and Halley’s methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbasbandy, S., Tan, Y., Liao, S.J.: Newton-homotopy analysis method for nonlinear equations. Appl. Math. Comput. 188(2), 1794–1800 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Alefeld, G.: On the convergence of Hally’s method. Am. Math. Mon. 88, 530–536 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Amat, S., Busquier, S., Gutiérrez, J.M.: Geometric constructions of iterative functions to solve nonlinear equations. J. Comput. Appl. Math. 157, 197–205 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Allgower, E., George, K.: Numerical continuation methods: an introduction, 388 pp. QA377.A56 640. Springer, New York (1990)

    MATH  Google Scholar 

  5. Broyden, C.G.: A class of of methods for solving nonlinear simultaneous equations. Math. Comput. 19, 577–593 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  6. Broyden, C.G.: Quasi-Newton methods and thier application to function minimization. Math. Comput. 21, 368–381 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  7. Dennis, J.E., More, J.: Quasi-Newton methods: motivation and theory. SIAM Rev. 19, 46–84 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  8. Kaya, D., El-Sayed, S.M.: Adomian’s decomposition method applied to systems of nonlinear algebraic equations. Appl. Math. Comput. 154, 487–493 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Floudas, A., Pardalos, P.M., Adjiman, C., Esposito, W., Gumus, Z., Harding, S., Klepeis, J., Mayer, C., Schweiger, C.: Handbook of Test Problems in Local and Global Optimization. Kluwer Academic, Dordrecht (1999)

    MATH  Google Scholar 

  10. Floudas, A.: Recent advances in global optimization for process synthesis, design, and control: enclosure of all solutions. Comput. Chem. Eng. S, 963–973 (1999)

    Article  Google Scholar 

  11. Golbabai, A., Javidi, M.: Newton-like iterative methods for solving system of non-linear equations. Appl. Math. Comput. 192, 546–551 (2007)

    Article  MathSciNet  Google Scholar 

  12. Gutierrez, J.M., Hernández, M.A.: A family of Chebyshev-Hally type methods in Banach spaces. Bull. Aust. Math. Soc. 55, 113–130 (1997)

    Article  MATH  Google Scholar 

  13. Nedzhibov, G.H.: A family of multi-point iterative methods for solving systems of nonlinear equations. J. Comput. Appl. Math. 222, 244–250 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  14. Homeier, H.H.H.: A modified Newton method with cubic convergence: the multivariate case. J. Comput. Appl. Math. 169, 161–169 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kubicek, M., Hoffman, H., Hlavacek, V., Sinkule, J.: Multiplicity and stability in a sequence of two nonadiabatic nonisothermal CSTR. Chem. Eng. Sci. 35, 987–996 (1980)

    Article  Google Scholar 

  16. Liao, S.J.: Beyond Perturbation: Introduction to the Homotopy Analysis Method. Chapman & Hall/CRC, Boca Raton (2003)

    Google Scholar 

  17. Liao, S.J.: On the homotopy analysis method for nonlinear problems. Appl. Math. Comput. 47, 499–513 (2004)

    Article  Google Scholar 

  18. Liao, S.J.: Notes on the homotopy analysis method: some defnitions and theorems. Commun. Nonlinear Sci. Numer. Simul. (2008). doi:10.1016/j.cnsns.2008.04.013

    Google Scholar 

  19. Liao, S.J., Tan, Y.: A general approach to obtain series solutions of nonlinear differential equations. Stud. Appl. Math. 119, 297–355 (2007)

    Article  MathSciNet  Google Scholar 

  20. Burden, R.L., Faires, J.D.: Numerical Analysis, 8th edn. Thomson Brooks/Cole (2005)

  21. Pramanik, S.: Kinematic synthesis of a six-member mechanism for automotive steering. ASME J. Mech. Des. 124, 642–645 (2002)

    Article  Google Scholar 

  22. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd edn. Texts in Applied Mathematics 12. Springer, New York (1992)

    Google Scholar 

  23. Traub, J.F.: Iterative Methods for the Solution of Equations. Prentice-Hall, Engle-wood Cliffs (1964)

    MATH  Google Scholar 

  24. Weerakoon, S., Fernando, T.G.I.: A variant of Newton’s method with accelerated third-order convergence. Appl. Math. Lett. 13, 87–03 (2000)

    Article  MathSciNet  Google Scholar 

  25. Werner, W.: Iterative solution of systems of nonlinear equations based upon quadratic approximations. Comput. Math. Appl. 12A(3), 331–343 (1986)

    Article  Google Scholar 

  26. Wu, X.Y.: A new continuation Newton-like method and its deformation. Appl. Math. Comput. 112(1), 75–78 (2000)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fadi Awawdeh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Awawdeh, F. On new iterative method for solving systems of nonlinear equations. Numer Algor 54, 395–409 (2010). https://doi.org/10.1007/s11075-009-9342-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11075-009-9342-8

Keywords

Mathematics Subject Classifications (2000)

Navigation