Numerical Algorithms

, Volume 53, Issue 2–3, pp 153–170 | Cite as

Trees and numerical methods for ordinary differential equations

  • J. C. ButcherEmail author
Original Paper


This paper presents a review of the role played by trees in the theory of Runge–Kutta methods. The use of trees is in contrast to early publications on numerical methods, in which a deceptively simpler approach was used. This earlier approach is not only non-rigorous, but also incorrect. It is now known, for example, that methods can have different orders when applied to a single equation and when applied to a system of equations; the earlier approach cannot show this. Trees have a central role in the theory of Runge–Kutta methods and they also have applications to more general methods, involving multiple values and multiple stages.


Runge-Kutta methods Trees Order conditions Taylor expansions 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Butcher, J.C.: Coefficients for the study of Runge–Kutta integration processes. J. Aust. Math. Soc. 3, 185–201 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Butcher, J.C.: On the integration processes of A. Hǔta. J. Aust. Math. Soc. 3, 202–206 (1963)zbMATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Butcher, J.C.: An algebraic theory of integration methods. Math. Comp. 26, 79–106 (1972)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Butcher, J.C.: On fifth order Runge–Kutta methods. BIT 35, 202–209 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Butcher, J.C.: Numerical Methods for Ordinary Differential Equations, 2nd edn. Wiley, Chichester (2008)zbMATHGoogle Scholar
  6. 6.
    Gill, S.: A process for the step-by-step integration of differential equations in an automatic digital computing machine. Proc. Camb. Philos. Soc. 47, 96–108 (1951)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Hairer, E., Nørsett, S.P., Wanner, G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (1993)zbMATHGoogle Scholar
  8. 8.
    Hairer, E., Wanner, G.: On the Butcher group and general multi-value methods. Computing 13, 1–15 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Heun, K.: Neue methoden zur approximativen integration der differentialgleichungen einer unabhängigen Veränderlichen. Z. Math. Phys. 45, 23–38 (1900)Google Scholar
  10. 10.
    Hǔta, A.: Une amélioration de la méthode de Runge–Kutta–Nyström pour la résolution numérique des équations différentielles du premier ordre. Acta Fac. Nat. Univ. Comen. Math. 1, 201–224 (1956)MathSciNetGoogle Scholar
  11. 11.
    Kutta, W.: Beitrag zur näherungsweisen integration totaler differentialgleichungen. Z. Math. Phys. 46, 435–453 (1901)Google Scholar
  12. 12.
    Nyström, E.J.: Über die numerische integration von differentialgleichungen. Acta Soc. Scient. Fenn. 50(13), 55pp. (1925)Google Scholar
  13. 13.
    Runge, C.: Über die numerische Auflösung von differentialgleichungen. Math. Ann. 46, 167–178 (1895)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.The University of AucklandAucklandNew Zealand

Personalised recommendations