Numerical Algorithms

, Volume 53, Issue 2–3, pp 219–238 | Cite as

New interpolants for asymptotically correct defect control of BVODEs

  • W. H. Enright
  • P. H. MuirEmail author
Original Paper


The defect of a continuous approximate solution to an ODE is the amount by which that approximation fails to satisfy the ODE. A number of studies have explored the use of asymptotically correct defect estimates in the numerical solution of initial value ODEs (IVODEs). By employing an appropriately constructed interpolant to an approximate discrete solution to the ODE, various researchers have shown that it is possible to obtain estimates of the local error and/or the maximum defect that are asymptotically correct on each step, as the stepsize h →0. In this paper, we investigate the usefulness of asymptotically correct defect estimates for defect control in boundary value ODE (BVODE) codes. In the BVODE context, for a sequence of meshes which partition the problem interval, one computes a discrete numerical solution, constructs an interpolant, and estimates the maximum defect. The estimates (typically obtained by sampling the defect at a small number of points on each subinterval of the mesh) are used in a redistribution process to determine the next mesh and thus the availability of these more reliable maximum defect estimates can lead to improved meshes. As well, when such estimates are available, the code can terminate with more confidence that the defect is bounded throughout the problem domain by the user-prescribed tolerance. In this paper we employ a boot-strapping approach to derive interpolants that allow asymptotically correct defect estimates. Numerical results are included to demonstrate the validity of this approach.


Runge-Kutta schemes Boundary value ODEs Defect control 

Mathematics Subject Classifications (2000)

65L05 65L10 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations, Classics in Applied Mathematics Series. Society for Industrial and Applied Mathematics, Philadelphia (1995)Google Scholar
  2. 2.
    Ascher, U.M., Christiansen, J., Russell, R.D.: Collocation software for boundary value ODEs. ACM Trans. Math. Softw. 7, 209–222 (1981)zbMATHCrossRefGoogle Scholar
  3. 3.
    Bader, G., Ascher, U.M.: A new basis implementation for a mixed order boundary value ode solver. SIAM J. Sci. Stat. Comp. 8, 483–500 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Burrage, K., Chipman, F.H., Muir, P.H.: Order results for mono-implicit Runge-Kutta methods. SIAM J. Numer. Anal. 31, 876–891 (1994)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Butcher, J.C.: The Numerical Analysis of Ordinary Differential Equations. Wiley, Chichester (1987)zbMATHGoogle Scholar
  6. 6.
    Cash, J.R.: A class of implicit Runge-Kutta methods for the numerical integration of stiff differential systems. J. ACM 22, 540–511 (1975)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Cash, J.R.: On the numerical integration of nonlinear two-point boundary value problems using iterated deferred corrections, Part 1: a survey and comparison of some one-step formulae. Comput. Math. Appl. 12a, 1029–1048 (1986)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Cash, J.R., Moore, G., Wright, R.W.: An automatic continuation strategy for the solution of singularly perturbed nonlinear boundary value problems. ACM Trans. Math. Softw. 27, 245–266 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Cash, J.R., Moore, D.R.: A high order method for the numerical solution of two-point boundary value problems. BIT, 20, 44–52 (1980)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Cash, J.R., Moore, D.R.: High-order interpolants for solutions of two-point boundary value problems using MIRK methods. Comput. Math. Appl. 48, 1749–1763 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Cash, J.R., Singhal, A.: High order methods for the numerical solution of two-point boundary value problems. BIT, 22, 184–199 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Cash, J.R., Singhal, A.: Mono-implicit Runge-Kutta formulae for the numerical integration of stiff differential systems. IMA J. Numer. Anal. 2, 211–227 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cash, J.R., Wright, M.H.: A deferred correction method for nonlinear two-point boundary value problems: implementation and numerical evaluation. SIAM J. Sci. Stat. Comput. 12, 971–989 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Enright, W.H.: A new error control for initial value solvers. Appl. Math. Comput. 31, 288–301 (1989)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Enright, W.H.: Analysis of error control strategies for continuous Runge-Kutta methods. SIAM J. Numer. Anal. 26, 588–599 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Enright, W.H.: The relative efficiency of alternative defect control schemes for high-order continuous Runge-Kutta formulas. SIAM J. Numer. Anal. 30, 1419–1445 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Enright, W.H.: Continuous numerical methods for ODEs with defect control. J. Comput. Appl. Math. 125, 159–170 (2000)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Enright, W.H., Jackson, K.R., Nørsett, S.P., Thomsen, P.G.: Interpolants for Runge-Kutta formulas. ACM Trans. Math. Softw. 12, 193–218 (1986)zbMATHCrossRefGoogle Scholar
  19. 19.
    Enright, W.H., Hayes, W.B.: Robust and reliable defect control for Runge-Kutta methods. ACM Trans. Math. Softw. 33, 1–19 (2007)CrossRefGoogle Scholar
  20. 20.
    Enright, W.H., Muir, P.H.: Efficient classes of Runge-Kutta methods for two-point boundary value problems. Computing 37, 315–334 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Enright, W.H., Muir, P.H.: Runge-Kutta software with defect control for boundary value ODEs. SIAM J. Sci. Comput. 17, 479–497 (1996)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Enright, W.H., Yan, L.: The quality/cost trade-off for a class of ODE solvers. Numer. Algorithms (2009, in press)Google Scholar
  23. 23.
    Gladwell, I., Shampine, L.F., Baca, L.S., Brankin, R.W.: Practical aspects of interpolation in Runge-Kutta codes. SIAM J. Sci. Statist. Comput. 8, 322–341 (1987)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Gupta, S.: An adaptive boundary value Runge-Kutta solver for first order boundary value problems. SIAM J. Numer. Anal. 22, 114–126 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Higham, D.J.: Robust defect control with Runge-Kutta schemes. SIAM J. Numer. Anal. 26, 1175–1183 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Higham, D.J.: Runge-Kutta defect control using Hermite-Birkhoff interpolation. SIAM J. Sci. Statist. Comput. 12, 991–999 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Kierzenka, J., Shampine, L.F.: A BVP solver based on residual control and the MATLAB PSE. ACM Trans. Math. Softw. 27. 299–316 (2001)zbMATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mazzia, F., Trigiante, D.: A hybrid mesh selection strategy based on conditioning for boundary value ODE problems. Numer. Algorithms 36, 169–187 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Muir, P.H.: Optimal discrete and continuous mono-implicit Runge-Kutta schemes for boundary value ODEs. Adv. Comp. Math. 10, 135–167 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Muir, P.H., Owren, B.: Order barriers and characterizations for continuous mono-implicit Runge-Kutta schemes. Math. Comp. 61, 675–699 (1993)zbMATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Russell, R.D., Christiansen, J.: Adaptive mesh selection strategies for solving boundary value problems. SIAM J. Numer. Anal. 14, 59–80 (1978)CrossRefMathSciNetGoogle Scholar
  32. 32.
    Shampine, L.F.: Interpolation for Runge-Kutta methods. SIAM J. Numer. Anal. 22, 1014–1027 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  33. 33.
    Shampine, L.F.: Solving ODEs and DDEs with residual control. Appl. Numer. Math. 52, 113–127 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Shampine, L.F., Muir, P.H.: Estimating conditioning of BVPs for ODEs. Math. Comput. Model. 40, 1309–1321 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Shampine, L.F., Muir, P.H., Xu, H.: A user-friendly Fortran BVP solver. J. Numer. Anal. Ind. Appl. Math. 1, 201–217 (2006)zbMATHMathSciNetGoogle Scholar
  36. 36.
    Weiss, R.: The application of implicit Runge-Kutta and collocation methods to boundary value problems. Math. Comp. 28, 449–464 (1974)zbMATHCrossRefMathSciNetGoogle Scholar
  37. 37.
    Wright, K.: Some relationships between implicit Runge-Kutta, collocation Lanczos τ methods, and their stability properties. BIT 10, 217–227 (1970)zbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2009

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of TorontoTorontoCanada
  2. 2.Department of Mathematics and Computing ScienceSaint Mary’s UniversityHalifaxCanada

Personalised recommendations