Numerical Algorithms

, 50:469 | Cite as

A high-order algorithm for multiple electromagnetic scattering in three dimensions

Original Paper

Abstract

We describe a fully discrete high-order algorithm for simulating multiple scattering of electromagnetic waves in three dimensions by an ensemble of perfectly conducting scattering objects. A key component of our surface integral algorithm is high-order tangential approximation of the surface current on each obstacle in the ensemble. The high-order nature of the algorithm leads to relatively small numbers of unknowns, which allows us to use either a direct method or an iterative boundary decomposition method for simulations of multiple scattering. We demonstrate the algorithm using both of these techniques for near and well separated obstacles. Using a small computing cluster (with 20 processors), we simulate multiple scattering by up to 125 objects for frequencies in the resonance region, and by paired obstacles of diameter 20 to 30 times the incident wavelength. Many physically important problems, such as scattering by atmospheric aerosols or ice crystals, involve multiple scattering by ensembles of particles, each particle having its own distinct shape, but with all particles fitting a stochastic description with a small number of fixed parameters in local spherical coordinates. We demonstrate our algorithm for multiple scattering by ensembles of such unique particles, whose stochastic description corresponds to computer models of ice crystals and dust particles.

Keywords

Multiple scattering Electromagnetic scattering Maxwell’s equations Radar cross section Monostatic Bistatic Boundary integral Spectral Galerkin Quadrature 

Mathematics Subject Classifications (2000)

65R20 65N35 

References

  1. 1.
    Balabane, M.: Boundary decomposition for helmholtz and maxwell equations 1: dijoint sub-scatterers. Asymptot. Anal. 38, 1–10 (2004)MATHMathSciNetGoogle Scholar
  2. 2.
    Bruning, J.H., Lo, Y.T.: Multiple scattering of EM waves by spheres part I—multipole expansions and ray-optical solutions. IEEE Antennas Propag. 19, 378–390 (1971)CrossRefGoogle Scholar
  3. 3.
    Bruning, J.H., Lo, Y.T.: Multiple scattering of EM waves by spheres part II—numerical and experimental results. IEEE Antennas Propag. 19, 391–400 (1971)CrossRefGoogle Scholar
  4. 4.
    Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. Wiley, New York (1983)MATHGoogle Scholar
  5. 5.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (1998)MATHGoogle Scholar
  6. 6.
    Dillenseger, J.-L., Guillaume, H., Patard, J.-J.: Spherical harmonics based intrasubject 3-D kidney modeling/registration technique applied on partial information. IEEE Trans. Biomed. Eng. 53, 2185–2193 (2006)CrossRefGoogle Scholar
  7. 7.
    Doicu, A., Wriedt, T., Eremin, Y.: Light Scattering by Systems of Particles. Null-Field Method with Discrete Sources—Theory and Programs. Springer, New York (2006)MATHGoogle Scholar
  8. 8.
    Dorn, O., Lesselier, D.: Level set methods for inverse scattering. Inverse Probl. 22, R67–R131 (2006)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Dorn, O., Lesselier, D.: Level set techniques for structural inversion in medical imaging. In: Suri, J.S., Farag, A. (eds.) Deformable Models: An Application in Biomaterials and Medical Imagery, pp. 61–90. Springer, New York (2007)Google Scholar
  10. 10.
    Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere. Oxford University Press, Oxford (1998)MATHGoogle Scholar
  11. 11.
    Fuller, K.A., Kattawar, G.W.: Consumate solution to the problem of electromagnetic scattering by an ensemble of spheres. I: linear chains. Opt. Lett. 13, 90–92 (1998)CrossRefGoogle Scholar
  12. 12.
    Fuller, K.A., Kattawar, G.W.: Consumate solution to the problem of electromagnetic scattering by an ensemble of spheres. II: clusters of arbitrary configuration. Opt. Lett. 13, 1063–1065 (1998)CrossRefGoogle Scholar
  13. 13.
    Fuller, A., Mackowski, W.D.: Electromagnetic scattering by compound spherical particles. In: Mishchenko, M.I., Hovenier, W., Travis, L.D. (eds.) Light Scattering by Nonspherical Particles, pp. 225–272. Academic, London (2000)Google Scholar
  14. 14.
    Ganesh, M., Graham, I.G.: A high-order algorithm for obstacle scattering in three dimensions. J. Comput. Phys. 198, 211–242 (2004)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Ganesh, M., Hawkins, S.C.: A spectrally accurate algorithm for electromagnetic scattering in three dimensions. Numer. Algorithms 43, 25–60 (2006)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Ganesh, M., Hawkins, S.C.: A hybrid high-order algorithm for radar cross section computations. SIAM J. Sci. Comput. 29, 1217–1243 (2007)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Ganesh, M., Hawkins S.C.: A high-order tangential basis algorithm for electromagnetic scattering by curved surfaces. J. Comp. Phys. 29, 4543–4562 (2008)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Ganesh, M., Hawkins, S.C.: Simulation of acoustic scattering by multiple obstacles in three dimensions. ANZIAM 50, C31–C45 (2008)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Geuzaine, C., Bruno, O., Reitich, F.: On the \(\mathcal{O}\)(1) solution of multiple-scattering problems. IEEE Trans. Magn. 41, 1488–1491 (2005)CrossRefGoogle Scholar
  20. 20.
    Goldberg-Zimring, D., Talos, I., Bhagwat, J., Haker, S., Black, P.M., Zou, K.H.: Statistical validation of brain tumor shape approximation via spherical harmonics for image-guided neurosurgery. Acad. Radiol. 12, 459–466 (2005)CrossRefGoogle Scholar
  21. 21.
    Gurel, L., Chew, W.C.: On the connection of T matrices and integral equations. In: IEEE Antennas and Propagation Society Symposium Digest, pp. 1624–1625. IEEE, Piscataway (1991)Google Scholar
  22. 22.
    Hellmers, J., Eremina, E., Wriedt, T.: Simulation of light scattering by biconcave Cassini ovals using the nullfield method with discrete sources. J. Opt. A Pure Appl. Opt 8, 1–9, (2006)CrossRefGoogle Scholar
  23. 23.
    Knott, E.F., Shaeffer, J.F., Tuley, M.T.: Radar Cross Section. SciTech, Canberra (2004)Google Scholar
  24. 24.
    Martin, P.A.: Multiple Scattering: Interaction of Time-Harmonic Waves with N Obstacles. Cambridge University Press, Cambridge (2006)MATHGoogle Scholar
  25. 25.
    Martinsson, P.G.: Fast evaluation of electro-static interactions in multi-phase dielectric media. J. Comp. Phys. 205, 289–299 (2006)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Martinsson, P.G., Rokhlin, V.: A fast direct solver for boundary integral equations in two dimensions. J. Comp. Phys. 205, 1–23 (2006)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Melrose, R.B., Taylor, M.E.: Near peak scattering and the corrected kirchhoff approximation for a convex obstacle. Adv. Math. 55, 242–315 (1985)MATHCrossRefMathSciNetGoogle Scholar
  28. 28.
    Mishchenko, M., Videen, G., Babenko, V., Khlebtsov, N., Wriedt, T.: T-matrix theory of electromagnetic scattering by particles and its applications: a comprehensive reference database. J. Quant. Spectrosc. Radiat. Transfer 88, 357–406 (2004)Google Scholar
  29. 29.
    Mishchenko, M.I., Travis, L.D., Lacis, A.A.: Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering. Cambridge University Press, Cambridge (2006)Google Scholar
  30. 30.
    Mishchenko, M.I., Travis, L.D., Macke, A.: T-matrix method and its applications. In: Mishchenko, I.J., Hovenier, W., Travis, L.D. (eds.) Light Scattering by Nonspherical Particles, chapter 6, pp. 147–172. Academic, London (2000)Google Scholar
  31. 31.
    Mishchenko, M.I., Travis, L.D., Mackowski, D.W.: T-matrix computations of light scattering by nonspherical particles: a review. J. Quant. Spectrosc. Radiat. Transfer 55, 535–575 (1996)CrossRefGoogle Scholar
  32. 32.
    Nousiainen, T., McFarquhar, G.M.: Light scattering by quasi-spherical ice crystals. J. Atmos. Sci. 61, 2229–2248 (2004)CrossRefGoogle Scholar
  33. 33.
    Rayleigh, L.: On the influence of obstacles arranged in rectangular order upon the properties of a medium. Phila. Mag. 34, 481–502 (1892)Google Scholar
  34. 34.
    Schuster, G.: A hybrid BIE + Born seris modeling scheme: generalized born series. J. Acoust. Soc. Am. 7, 865–879 (1985)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Stout, B., Auger, J.-C., Lafait, J.: A transfer matrix approach to local field calculations in multiple-scattering problems. J. Mod. Opt. 49, 2129–2152 (2002)MATHCrossRefGoogle Scholar
  36. 36.
    Tsang, L., Kong, J.A., Ding, K.: Scattering of Electromagnetic Waves: Theories and Applications. Wiley, New York (2000)CrossRefGoogle Scholar
  37. 37.
    Veihelmann, B., Nousiainen, T., Kahnert, M., van der Zande, W.J.: Light scattering by small feldspar particles simulated using the gaussian random sphere geometry. J. Quant. Spectrosc. Radiat. Transfer 100, 393–405 (2005)CrossRefGoogle Scholar
  38. 38.
    Wang, Y.M., Chew, W.C.: A recursive T-matrix approach for the solution of electromagnetic scattering by many spheres. IEEE Trans. Antennas Propag. 41, 1633–1639 (1993)CrossRefGoogle Scholar
  39. 39.
    Waterman, P.: Matrix formulation of electromagnetic scattering. Proc. IEEE 53, 805–812 (1965)CrossRefGoogle Scholar
  40. 40.
    Woo, A.C., Wang, H.T., Schuh, M.J., Sanders, M.L.: Benchmark radar targets for the validation of computational electromagnetics programs. IEEE Antennas Propag. Mag. 35, 84–89 (1993)CrossRefGoogle Scholar
  41. 41.
    Wriedt, T., Hellmers, J., Eremina, E., Schuh, R.: Light scattering by single erythrocite: comparison of different methods. J. Quant. Spectrosc. Radiat. Transfer 100, 444–456 (2006)CrossRefGoogle Scholar
  42. 42.
    Xu, Y.-L.: Electromagnetic scattering by an aggregate of spheres. J. Opt. Soc. Am. A 20(11), 2093–2105 (2003)CrossRefGoogle Scholar
  43. 43.
    Zacharopoulos, A.D., Arridge, S.R., Dorn, O., Kolehmainen, V., Sikora, J.: 3D shape reconstruction in optical tomography using spherical harmonics and BEM. J. Electromagn. Waves Appl. 20, 1827–1836 (2006)CrossRefGoogle Scholar
  44. 44.
    Zacharopoulos, A.D., Arridge, S.R., Dorn, O., Kolehmainen, V., Sikora, J.: Three-dimensional reconstruction of shape and piecewise constant region values for optical tomography using spherical harmonic parametrization and a boundary element method. Inverse Probl. 22, 1509–1532 (2006)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Department of Mathematical and Computer SciencesColorado School of MinesGoldenUSA
  2. 2.School of Mathematics and StatisticsUniversity of New South WalesSydneyAustralia

Personalised recommendations