Numerical Algorithms

, Volume 51, Issue 2, pp 195–208 | Cite as

Vector extrapolation enhanced TSVD for linear discrete ill-posed problems

  • K. Jbilou
  • L. Reichel
  • H. Sadok
Original Paper


The truncated singular value decomposition (TSVD) is a popular solution method for small to moderately sized linear ill-posed problems. The truncation index can be thought of as a regularization parameter; its value affects the quality of the computed approximate solution. The choice of a suitable value of the truncation index generally is important, but can be difficult without auxiliary information about the problem being solved. This paper describes how vector extrapolation methods can be combined with TSVD, and illustrates that the determination of the proper value of the truncation index is less critical for the combined extrapolation-TSVD method than for TSVD alone. The numerical performance of the combined method suggests a new way to determine the truncation index.


Ill-posed problem Truncated singular value decomposition Vector extrapolation Truncation criterion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baart, M.L.: The use of auto-correlation for pseudo-rank determination in noisy ill-conditioned least-squares problems. IMA J. Numer. Anal. 2, 241–247 (1982)zbMATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Bakushinskii, A.B.: Remarks on choosing a regularization parameter using quasi-optimality and ratio criterion. U.S.S.R. Comput. Math. Math. Phys. 24(4), 181–182 (1984)CrossRefGoogle Scholar
  3. 3.
    Brezinski, C.: Généralisation de la transformation de Shanks, de la table de Padé et de l’epsilon-algorithm. Calcolo 12, 317–360 (1975)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Brezinski, C., Redivo Zaglia, M.: Extrapolation Methods: Theory and Practice. North-Holland, Amsterdam (1991)zbMATHGoogle Scholar
  5. 5.
    Brezinski, C., Redivo Zaglia, M., Rodriguez, G., Seatzu, S.: Extrapolation techniques for ill-conditioned linear systems. Numer. Math. 81, 1–29 (1998)zbMATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Brezinski, C., Rodriguez, G., Seatzu, S.: Error estimates for linear systems with applications to regularization. Numer. Algorithms (in press)Google Scholar
  7. 7.
    Cabay, S., Jackson, L.W.: A polynomial extrapolation method for finding limits and antilimits for vector sequences. SIAM J. Numer. Anal. 13, 734–752 (1976)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Eddy, R.P.: Extrapolation to the limit of a vector sequence. In: Wang, P.C.C. (ed.) Information Linkage Between Applied Mathematics and Industry, pp. 387–396. Academic Press, New York (1979)Google Scholar
  9. 9.
    Ford, W.D., Sidi, A.: Recursive algorithms for vector extrapolation methods. Appl. Numer. Math. 4, 477–489 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Gander, W., Golub, G.H., Gruntz, D.: Solving linear equations by extrapolation. In: Kovalic, J.S. (ed.) Supercomputing, Nato ASI Series F: Computer and Systems Sciences, vol. 62, pp. 279–293. Springer, Berlin (1989)Google Scholar
  11. 11.
    Golub, G.H., Kahan, W.: Calculating the singular values and pseudoinverse of a matrix. SIAM J. Numer. Anal. 2, 205–224 (1965)MathSciNetGoogle Scholar
  12. 12.
    Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. Johns Hopkins University Press, Baltimore (1996)zbMATHGoogle Scholar
  13. 13.
    Hansen, P.C.: Regularization tools: A MATLAB package for analysis and solution of discrete ill-posed problems. Numer. Algorithms 6, 1–35 (1994). Software is available in Netlib at zbMATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Hansen, P.C.: Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia (1998)Google Scholar
  15. 15.
    Jbilou, K., Sadok, H.: Some results about vector extrapolation methods and related fixed point iterations. J. Comput. Appl. Math. 36, 385–398 (1991)zbMATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Jbilou, K., Sadok, H.: Analysis of some vector extrapolation methods for linear systems. Numer. Math. 70, 73–89 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Jbilou, K., Sadok, H.: LU-implementation of the modified minimal polynomial extrapolation method. IMA J. Numer. Anal. 19, 549–561 (1999)zbMATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Jbilou, K., Sadok, H.: Vector extrapolation methods. Applications and numerical comparison. J. Comp. Appl. Math. 122, 149–165 (2000)zbMATHMathSciNetGoogle Scholar
  19. 19.
    Mesina, M.: Convergence acceleration for the iterative solution of x = Ax + f. Comput. Meth. Appl. Mech. Eng. 10, 165–173 (1977)zbMATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pugatchev, B.P.: Acceleration of the convergence of iterative processes and a method for solving systems of nonlinear equations. U.S.S.R. Comput. Math. Math. Phys. 17, 199–207 (1978)CrossRefGoogle Scholar
  21. 21.
    Sidi, A.: Convergence and stability of minimal polynomial and reduced rank extrapolation algorithms. SIAM J. Numer. Anal. 23, 197–209 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  22. 22.
    Sidi, A.: Extrapolation vs. projection methods for linear systems of equations. J. Comput. Appl. Math. 22, 71–88 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Sidi, A., Bridger, J.: Convergence and stability analyses for some vector extrapolation methods in the presence of defective iteration matrices. J. Comput. Appl. Math. 22, 35–61 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Sidi, A., Ford, W.F., Smith, D.A.: Acceleration of convergence of vector sequences. SIAM J. Numer. Anal. 23, 178–196 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  25. 25.
    Smith, D.A., Ford, W.F., Sidi, A.: Extrapolation methods for vector sequences. SIAM Rev. 29, 199–233 (1987); correction, SIAM Rev. 30, 623–624 (1988)zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC. 2008

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques Pures et AppliquéesUniversité du Littoral, Centre Universtaire de la Mi-VoixCalais cedexFrance
  2. 2.Department of Mathematical SciencesKent State UniversityKentUSA

Personalised recommendations